Multi-Resonance Emitters (MREs) are a promising candidate for fulfilling the harsh requirements of display applications due to their unique photophysical properties. Recently, MREs have been widely used as a Terminal Emitter (TE) in Hyper Fluorescence Organic Light-Emitting Diodes (HF-OLEDs); however, since MREs are always TADF-active, possessing long triplet lifetimes in milli-second order, they result in severe chemical degradation. The device lifetime of blue OLED is still a challenge. Here, instead of shortening the delayed lifetime of MREs by molecular design, we introduced a low-triplet pyrene unit into an MRE scaffold to achieve narrowband emission and quick removal of triplets in MREs simultaneously. Blue HF-OLED based on the non-TADF MRE demonstrated a high external quantum efficiency (EQE) of 20% and a ten-fold improvement in stability, compared to those of the HF-OLEDs with standard MREs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.