A simulation method for analyzing polarization states for infrared scenes is proposed in order to study the polarization features of infrared spontaneous emission deeply, since current infrared polarization devices can’t show the polarization signature of infrared spontaneous emission for a target or an object well. A preliminary analysis on polarization characteristics of infrared spontaneous emission in the ideal case is carried out and also a corresponding ideal model is established through Kirchhoff’s law and the Fresnel theorem. Based on the newly built ideal model, a three-dimensional (3D) scene modeling and simulation based on the OpenSceneGraph (OSG) rendering engine is utilized to obtain the polarization scene of infrared emission under ideal conditions. Through the corresponding software, different infrared scenes can be generated by adjusting the input parameters. By interacting with the scene, the infrared polarization images can be acquired readily, also a fact can be obviously confirmed that the degree of linear polarization (DoLP) for an object in the 3D scene varies with the many factors such as emission angle and complex refractive index. Moreover, large difference between two kinds of material such as metal and nonmetal in the polarization characteristics of infrared spontaneous emission at the same temperature can be easily discerned in the 3D scene. The 3D scene simulation and modeling in the ideal case provides a direct understanding on infrared polarization property, which is of great significance for the further study of infrared polarization characteristics in the situation of real scenes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.