Metalenses are flat lenses made from thin films with sub-wavelength nano-optical structures that can be created using the same processes that have been developed for integrated circuit manufacturing. We present a workflow that simulates the manufacturing process and enables process engineers and optical designers to study the impact of manufacturing on metalens performance without waiting for multiple manufacture-and-test cycles. To demonstrate this workflow, we design several metalenses and characterize the impact of process variation on absolute focusing efficiency, transmission, and output electric field.
Metalenses are flat devices that focus and manipulate optical waves. Unlike reflective and refractive optics, metalenses rely on phase shifts introduced by subwavelength metastructures. Demonstrate the cost and performance impact of using manufactured metaatoms from two lithography processes to design and manufacture metalenses. Design two types of metalenses, the first type (ideal) uses an ideal design made up of square metaatoms. This lens design is then simulated using both 193nm and 248nm lithography processes. The second type (manufacture-aware) uses a design that is built around metaatom profiles produced by the corresponding lithography process (193nm and 248nm respectively). By comparing the performance of these two approaches (ideal and manufacture-aware) we demonstrate the process performance impact can be reduced. Comparing 193nm and 248nm processes show a up to a 27% difference in monochromatic metalens performance for a design derived from ideal metaatoms. However, by simulating manufactured metaatoms and using them in the design stage, manufactured metalens performance returns to within 7% of ideal. When designing with manufactured metaatoms rather than ideal metaatoms, metalens performance is similar between both 193nm and 248nm processes and manufacture-aware design makes either process viable for visible-light metalens manufacturing.
Using waveguide to propagate images from micro displays to human eyes can effectively reduce the size and weight of AR equipment. For the optical design, we need grating structures to couple rays into or out of waveguide with sufficient uniformity while remaining the most efficienct. Additionally, enlarging the FOV (Field of View) and taking chromatically into account are important for offering an immersive experience for AR users. From the CAE tools perspective, the critical challenge is to consider the requirements all together. Hence, the key for waveguided AR design is a feasible design flow and comprehensive simulation tools to address the design challenges. We successfully integrated wave optics phenomenon into geometrical optics results to complete a waveguide AR glasses optimizing design by using Synopsys RSoft RCWA tool DiffractMOD, LightTools and parametric BSDF interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.