Optoelectronic nanocrystals are of enormous interest for material science and applications including solar cells and light-emitting diodes due to precise tunability of their properties via size and shape. Accordingly, various synthetic methods have been proposed, but achieving monodispersed nanocrystals remains a key challenge leading to the present lack of their commercial value and real-world applications. In this presentation, I will present that unique features of liquid crystals can be leveraged to synthesize nanocrystals with an unprecedented level of control over size and shape. The approach is a simple, rapid, and room-temperature process, yet it enables access to highly homogeneous nanocrystals with substantially reduced surface defects resulting in significantly improved optoelectronic features. The results offer a versatile and generalizable strategy to be broadly compatible with a range of nanomaterials and other synthetic methods. This work was supported by NRF funded by the Korea government (RS-2023-00212739, RS-2023-00302586).
Optoelectronic nanocrystals are of enormous interest for material science and applications including solar cells and light-emitting diodes due to precise tunability of their properties via size and shape. Accordingly, various synthetic methods have been proposed, but achieving monodispersed nanocrystals remains a key challenge leading to the present lack of their commercial value and real-world applications. In this presentation, I will present that unique features of liquid crystals can be leveraged to synthesize nanocrystals with an unprecedented level of control over size and shape. The approach is a simple, rapid, and room-temperature process, yet it enables access to highly homogeneous nanocrystals with substantially reduced surface defects resulting in significantly improved optoelectronic features. The results offer a versatile and generalizable strategy to be broadly compatible with a range of nanomaterials and other synthetic methods. This work was supported by NRF funded by the Korea government (RS-2023-00212739, RS-2023-00302586).
Over the past decade, amorphous metal oxide semiconductors have attracted great interest as low-cost alternatives to thin film transistors (TFTs) due to their high electron mobility, high optical transparency, good environmental/thermal stability, and processing versatility. In contrast, realization of high performance transparent p-type oxide semiconductors remain intangible with urgent industrial demands. In this work, we report solution-processed inorganic p-type copper iodide (CuI) and oxide thin film transistors (TFTs). The spin coated CuI film showed high mobility over 2 cm2 V-1 s-1 by proper treatments such as optimization process condition and applying dopant. Transparent complementary inverters composed of p-type CuI and n-type indium gallium zinc oxide TFTs are demonstrated. We also introduce our recent results of perovskite transistors.
For at least the past 10 years, printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. In this presentation, I will give a talk on the recent progressive of my group on development of printed organic integrated circuits. I will mainly talk about on development of high performance inkjet printed unipolar and ambipolar polymer field-effect transistors (FETs), and applications to elementary organic complementary logic circuits by applying novel polymer dielectrics, new organic semiconducting and design new printing processes. In particular, we engineered and introduce new concept based for solution processed solid-state electrolyte gate insulators (SEGIs) by precise blending of P(VDF-TrFE) solution and P(VDF-HFP)-[EMIM][TFSI] gel solution resulting, after deposition of a thin film solid gate dielectric FETs, in ultrahigh field-effect mobility (μFET) and stable devices operating at low-voltage for several classes of unconventional semiconductors including -conjugated polymers, metal-oxides and other carbonaceous materials. By adding a minute amount (3% volume ratio for the optimal composition) of P(VDF-HFP)-[EMIM][TFSI] to the bulk fluorinated P(VDF-TrFE), high areal capacitance of > 4 µFcm-2 is reached thanks to the combined polarization of the -C-F interface dipoles and electrical double layers formation. To eliminate the integral complexity in differentiating field induced charge carriers from any possible carriers resulting from electrochemical doping of the semiconducting layer, we systematically measured the specific capacitance for each semiconductor/dielectric FET combination to avoid overestimation of the μFET extraction in our SEGI devices - a major common issue in several publications. For instance, with our engineered SEGIs, unprecedented hole mobility increase from ~10-2 to 5 cm2V-1s-1 (corresponding ~37 cm2V-1s-1 by commonly used method) at ≤ 2 V operation is reached in commercially available poly(3-hexylthiophene-2,5-diyl) (P3HT) FETs, and μFET exceeding 10 cm2V-1s-1 in others semiconductors.
Highly photosensitive organic phototransistors (OPTs) with an organic thin film transistors configuration based on a biphenyl end capped fused bithiophene oligomer (BPTT) and copper phthalocyanine (CuPC) were prepared. The measured maximum responsivity and the ratio of photocurrent to dark current (IPh/IDark) in BPTT and CuPC OPTs were 82 A/W, 2 A/W and 2.0 × 105, 1000 under 365 nm UV light with 1.55 mW/cm2, respectively. The prepared OPTs showed a photocurrent response similar to the photo to current conversion efficiency (IPCE) spectrum of BPTT and CuPC. The main mechanisms responsible for photocurrent amplification in the devices were examined by comparing theoretical and measured data. The photovoltaic (turn-on) and photoconductive effect (turn-off) of the OPTs were determined by fitting to theoretical equations. The findings confirmed that the operation of the OPTs followed as photo-voltaic (turn-on state) and photo-conductive (turn-off state) behaviors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.