Ferroelectric field effect transistors (FFETs) with hysteretic I-V characteristics were attained with 25 nm thick Pb(Zr0.52Ti0.48)O3 (PZT)/Si3N4 gated AlGaN/GaN heterostructure. The PZT films used in the gate of the device was deposited by magnetron rf-sputtering at the substrate temperature of 700 oC. Increasing the PZT deposition temperature from that in previous device structures from 600 oC to 700 oC we obtained much improved device performance in terms of the IV characteristics inclusive of hysteretic behavior. The pinch-off voltage was about 7 V in FFET device compared to 6 V in a the control (conventional) AlGaN/GaN device. Counterclockwise hysteresis appeared in the transfer characteristic curve of a FFET with a maximal drain current shift of about 10 mA at the gate-to-source voltage of -6 V.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.