The Single Aperture Large Telescope for Universe Studies (SALTUS) is a deployable space telescope designed to provide the astrophysics community with an extremely large far-infrared (far-IR) space observatory to explore our cosmic origins. The SALTUS observatory can observe thousands of faint astrophysical targets, including the first galaxies, protoplanetary disks in various evolutionary states, and a wide variety of solar system objects. The SALTUS design architecture utilizes radiatively cooled, 14-m diameter unobscured aperture, and cryogenic instruments to enable both high spectral and spatial resolution at unprecedented sensitivity over a wavelength range largely unavailable to any existing ground or space observatories. The unique SALTUS optical design, utilizing a large inflatable off-axis primary mirror, provides superb sensitivity, angular resolution, and imaging performance at far-IR wavelengths over a wide ±0.02 deg×0.02 deg field of view. SALTUS’ design, with its highly compact form factor, allows it to be readily stowed in available launch fairings and subsequently deployed in orbit.
The theory, design techniques, and fabrication of high harmonic diffractive (HHD) lenses is presented. HHD lenses are of high interest for ultralightweight and large aperture imaging systems. The interesting chromatic focal characteristics, image quality, and correction subsystems are discussed that can provide high image quality (achromatic and apochromatic) over broad optical bandwidths. A fabrication example is given of an HHD lens combined with a molded glass HHD lens combined with a single-order diffractive Fresnel lens, which is called a multiple-order diffractive engineered surface (MODE) lens. This type of lens is being developed for ultralightweight space telescopes, although they will have application in other areas.
Progress in development of a multiple-order diffractive engineered (MODE) lens as applied to space telescopes, where an ultralightweight primary lens is used instead of a mirror, is presented. Precision glass molding is used to fabricate a prototype 0.24 m diameter primary lens, and advanced alignment technology is used to bond lens segments into a ridged, monolithic structure. The primary lens is used in an f/4.17 telescope with a color corrector that provides diffraction-limited imaging over the astronomical R-band of wavelengths (589 nm to 727 nm) and +/- 0.125° field of view. Fabrication data, alignment results, and imaging experiments are presented.
KEYWORDS: Tolerancing, Received signal strength, Telescopes, Mirrors, Wavefront errors, Observatories, Space mirrors, Space telescopes, Optical surfaces, Optical design
The size of the optics used in observatories is often limited by fabrication, metrology, and handling technology, but having a large primary mirror provides significant benefits for scientific research. The evolution of rocket launch options enables heavy payload carrying on orbit and outstretching the telescope’s form-factor choices. Moreover, cost per launch is lower than the traditional flight method, which is obviously advantageous for various novel space observatory concepts. The University of Arizona has successfully fabricated many large-scale primary optics for ground-based observatories including the Large Binocular Telescope (LBT, 8.4 meter diameter two primary mirrors), Large Synoptic Survey Telescope (now renamed to Vera C. Rubin Observatory, 8.4 meter diameter monolithic primary and tertiary mirror), and the Giant Magellan Telescope (GMT, 8.4 meter diameter primary mirror seven segments). Launching a monolithic primary mirror into space could bypass many of the difficulties encountered during the assembly and deployment of the segmented primary mirrors. However, it might bring up unprecedented challenges and hurdles, also. We explore and foresee the expected challenges and evaluate them. To estimate the tolerance and optical error budget of a large optical system in space such as three mirror anastigmat telescope, we have developed a methodology that considers various errors from design, fabrication, assembly, and environmental factors.
The initial testing of prototype multiple-order-diffraction engineered (MODE) lens telescope is essential process before the sky test to evaluate the optical imaging performance of a space object. Prototype MODE lens telescope consists of MODE primary lens which is a core component to correct secondary spectrum, a field lens and a double Gauss type color corrector and achieves a diffraction limited performance. The performance is tested on the diffraction efficiency with respect to supercontinuum laser wavelength on an optical testbed and evaluated on the polychromatic performance for prototype molded ring segment.
KEYWORDS: Diffractive optical elements, Astrobiology, Telescopes, Space observatories, Planets, Space telescopes, James Webb Space Telescope, Space operations, Stars, Satellites, Optical fabrication
We describe progress on the Nautilus Space Observatory concept that is enabled by novel, very large (8.5mdiameter), ultralight-weight, multi-order diffractive lenses that can be cost-effectively replicated. The scientific goal of Nautilus is the rigorous statistical exploration of one thousand potentially life-bearing planets and the assessment of the diversity of exo-earths. Here we review the science requirements and key design features of Nautilus. The new optical technology (MODE lenses) at the heart of the Nautilus telescopes also poses exciting new optical fabrication and metrology challenges. We will summarize these challenges and provide an overview of emerging solutions.
The stray light analysis and testing of multiple-order-diffraction engineered (MODE) lens telescope is an essential step in the evaluation of optical imaging performance of the telescope. The MODE primary lens has a multi-order diffractive (MOD) front surface and single-order (M = 1) diffractive Fresnel lens (DFL) rear surface. Both of MOD and DFL surfaces have four transitions between five annular zones. Stray light can be minimized to prevent unwanted photons from reaching the science instrument detectors. Stray light is evaluated on an optical testbed to test the polychromatic performance with a supercontinuum laser.
The primary lens of our multi-order diffractive engineered (MODE) lens telescope combines traditional lens design and a diffractive element to mitigate longitudinal chromatic aberration (LCA). This design uses a 24 cm diameter aperture. In order to make the primary in molded glass, the lens is constructed in 9 segments, 1 radially symmetric center segment, and 8 identical ring segments. A monolithic 24cm aperture MODE lens is not possible at this time, due to limitations of our 14 cm diameter molding cavity. The ring segments each subtend a 45° angular subtense of the ring around the center segment, combining to form a 360° ring around the center segment. Due to the irregular shape of the ring segments and the high precision diffractive surfaces within the design, the lenses are fabricated using precision glass molding (PGM). This presentation considers mold insert design, preform selection, and molding process development. Beyond the overall structure of the molds, the design of the mold insert requires considerations for thermal expansion of the mold and mitigation of adhesion between the mold and the lens using an antiadhesion coating. The preform selection considers both the thermal and optical properties of the glass to be molded and the proper shape of the preform for the easiest material flow during the mold cycle. The general molding process is summarized as heating the preform above the glass transition temperature, applying a force to the mold inserts, and cooling the mold assembly before release.
The longitudinal chromatic aberration (LCA) specific to a high-harmonic multi order diffractive engineered (MODE) lens designed for the astronomical R band (589nm to 727nm) is described and demonstrated. This Type 2 LCA is characterized by rapid changes of focal position versus wavelength over a focal range of f0/M, where f0 is the design focal length at 658nm and M=2196 is the harmonic order. Type 2 LCA effects on image performance and correction methods are also discussed and demonstrated.
The color corrector (CC) system serves as an essential part of the multi-order diffractive engineered (MODE) lens system to provide near diffraction limited performance by correcting residual refractive and diffractive dispersion of MODE primary over the astronomical R-band (589 nm to 727 nm). The CC is designed to collimate and refocus the image from the MODE primary as a unit magnification relay and corrects chromatic aberrations at the same time. As a result, the system including the optomechanics of the CC is specifically designed for compensating errors from both the MODE primary and the CC. Results regarding prototyping, assembly and testing of the color corrector are reported.
Exceptional wavefront correction is required for coronagraphs on future space observatories to reach 10-10 contrasts for direct imaging of rocky exoplanets around Sun-like stars. This picometer level wavefront correction must be stable over long periods of time and should be limited only by photon noise and wavefront sensing architecture. Thus, wavefront errors that arise from optical surface errors, thermal gradients, pointing induced beamwalk, and polarization aberration must be tightly controlled. A self-coherent camera (SCC) allows for image plane correction of mid-spatial frequency errors and a continuous means of dark-hole maintenance. By introducing a reference pinhole at the Lyot stop of a coronagraph, coherent starlight can be interfered with image plane speckles while leaving incoherent planet light untouched. A coronagraph model was created using High Contrast Imaging in Python (HCIPy) to simulate the SCC. Using these tools, realistic input disturbances can be introduced to analyze wavefront sensor performance. Using our model, we first demonstrate the necessity of a complimentary low-order wavefront sensor (LOWFS) to be paired with the SCC. Next, we discuss considerations when creating the modified Lyot stop of an SCC. Finally, a tolerance analysis of the SCC in the presence of optical surface errors, beamwalk due to pointing errors, photon noise, and detector read noise is presented.
A theory of correcting residual change in focal length with wavelength is presented for high-harmonic diffractive lenses. The theory is based on a multiple-order diffractive (MOD) lens in combination with a stepped plate called an Arizona total energy color corrector (AZTECC) lens. Results indicate that best performance in terms of on-axis focused irradiance versus wavelength is found when low-dispersion glass is used for the AZTECC lens. A single-order diffractive Fresnel lens (DFL) in combination with the AZTECC lens makes the system achromatic over a wide bandwidth.
Rapid detection and identification of novel viruses, such as SARS-CoV-2, is critical to treat, isolate, or hospitalize those infected, ultimately, to curb the spread of the virus. Diagnostic assays, such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), are considered the gold standard for testing, but are labor-intensive and/or involve creating probe molecules specific to the virus. We propose Raman spectroscopy as an alternative method of detection because it can be label-free and can offer identifying information on many analytes within a sample. Specifically, we are developing a vacuum ultraviolet (VUV) Raman spectrometer using an incoherent excitation source that emits the hydrogen Lyman-α line radiation at 121.57 nm. The main benefit of using a VUV source is that the Raman scattering cross-section is inversely proportional to the fourth power of wavelength, which means that VUV photons would yield several orders of magnitude higher scattering cross-sections than excitation in the visible or near-infrared. In addition, the 121.57 nm wavelength transmits up to 2 cm in dry air, so the analyte can be oriented in standard testing formats. We have been successful in producing strong and consistent HLA emission using both a dielectric-barrier discharge (DBD) plasma source and a commercial source. In the near future, we expect to produce consistent Raman signatures in solid and liquid media. HLAS will transform diagnostic medicine and several other industries through its powerful capabilities of detecting real-time infections and important health markers.
Laser beam steering technology is essential for modern consumer and scientific optical devices including displays, microscopy, and Light Detection and Ranging (LIDAR) systems. Along with mechanical and completely non-mechanical beam steering approaches, Micro Electro Mechanical Systems (MEMS) are emerging beam steering devices that are especially suitable for LIDAR systems due to their fast scan rate and large scan angle. A class of MEMS-based devices, the Digital Micromirror Device (DMD), has been demonstrated for beam steering too by synchronizing its mirror movement to laser pulse. The tilt movement of micromirrors synchronizes with multiple pulses from multiple laser sources that sequentially redirect the pulses to multiple diffraction orders within μs. Based on the beam steering principle, multi-beam and multi-pulse beam steering in single-chip DMD LIDAR architecture provides a pathway to fast distance range finding having over 1M samples/s scan rate by leveraging a commercially available DMD, laser diodes and drivers. As a proof of concept, 3.34kHz and 15 points of range finding is demonstrated by using three pulsed laser diodes operating at 905nm. Additionally, multi-pulse beam steering for 5 points with an increased scanning rate of 6.63kHz demonstrates further enhancement of the scanning speed. The approach opens up a pathway to achieve a LIDAR system with a scanning rate over 1M samples/s while leveraging a state of the art DMD and a moderate number of laser sources.
Adaptive Optics (AO) is an established technique for improving image quality and compensating for aberrations induced by focusing through samples with varying thickness and refractive index. Future optical data storage schemes with multiple data layers may require the correction capabilities of AO systems. However, the diffractive phase introduced by light reflected from optical storage media might be problematic for high-performance systems. A laser beam focused onto grooved media has a reflection with a baseball-shaped variation in the pupil, caused by the overlap in diffracted orders with the zero-order reflection. This pupil variation is significant in intensity, and simulations and experiments show that there is an associated small variation in phase. If the diffractive phase is sufficiently small, measurement of the total phase with aberrations by a wavefront sensor could enable application of AO correction with diffractive media samples. Simulations and experiments are presented to examine the capability of an adaptive optics microscope system to compensate for diffractive effects with a coherently illuminated sample. AO systems are commonly implemented with incoherent objects, but this could be extended to other applications by characterizing the performance of an AO system with a coherent reflection from a diffractive surface. Data storage media are used as targets for investigating these intensity and phase variations caused by coherence effects, with well-defined grating parameters creating diffraction patterns that are modeled and verified experimentally. There are potential applications outside of data storage, such as coherent freespace optical communication.
An imaging lidar system is presented which combines the high speed of a Digital Micromirror Device (DMD) and the higher range of a 1D collimated scanning output. The system employing 1D line object illumination along with DMD placed at focal plane enables flexible optimization of system metrics, such as field of view, angular resolution, maximum range distance and frame rate.
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
Nonlinear emission properties of aggregated 50-nm gold nanoparticles (GNPs) excited by a femtosecond laser at 1560 nm are characterized. Aggregate forms are correlated to emission by scanning electron microscope imaging and pattern matching. Broad spectra in the visible region are obtained from aggregated GNPs, and their emission power exhibits a quadratic power dependence and an exponential decay in time due to morphology change. Polarization analysis reveals that longitudinal plasmonic modes play important roles for nonlinear emission. Relationships between brightness and morphology show that a large number of aggregates produce luminescence enhancement but with associated photo damage. It is proposed that characteristics of nonlinear emission from GNPs are explained by plasmon enhanced polarized hot electrons.
An adaptive optics system is designed and constructed to recover information from damaged optical media. The system is based on an Olympus IX70 microscope with custom illumination and detection. A scanning 408nm laser beam provides both the reference beam for the adaptive optics system and the data beam for imaging of data marks. A two-dimensional galvanometer system is used to scan the focused laser over the sample, and a precision z stage is used to change focus planes. The adaptive optics system is based on a Thorlabs AO kit with a Shack-Hartman wavefront sensor and a deformable mirror. A custom objective lens using a solid immersion lens is implemented that provides NA up to 1.5. Several types of data storage substrates are examined, including partial DVD and BD substrates, small 2cm-square pieces of DVD and BD substrates, and dust fragments on the order of 2mm in size. In order to view the dust fragments, they are collected on a microscope slide and melted to reflow the plastic and reveal data-containing flakes.
Although gold nanoparticles (GNPs) are promising probes for biological imaging because of their attracting optical properties and bio-friendly nature, properties of the multi-photon (MP) emission from GNP aggregates produced by a short-wave infrared (SWIR) laser have not been examined. In this paper, characterization of MP emission from aggregated 50 nm GNPs excited by a femtosecond (fs) laser at 1560 nm is discussed with respect to aggregate structures. The key technique in this work is single particle spectroscopy. A pattern matching technique is applied to correlate MP emission and SEM images, which includes an optimization processes to maximize cross correlation coefficients between a binary microscope image and a binary SEM image with respect to xy displacement, image rotation angle, and image magnification. Once optimization is completed, emission spots are matched to the SEM image, which clarifies GNP ordering and emission properties of each aggregate. Correlation results showed that GNP aggregates have stronger MP emission than single GNPs. By combining the pattern matching technique with spectroscopy, MP emission spectrum is characterized for each GNP aggregate. A broad spectrum in the visible region and near infrared (NIR) region is obtained from GNP dimers, unlike previously reported surface plasmon enhanced emission spectrum.
By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.
Nano-scale resolution in miniature optical systems has been realized in the optical data storage industry. Numerical
apertures greater than unity have been achieved in by utilizing the high index material of a hemispherical Solid
Immersion Lens (SIL), which increases the resolution of the backing objective by a factor that is related to the refractive
index of the SIL. In this research, a custom Hyper-Blu-Disc (HBD) NA=1.4 SIL objective is utilized for high-fidelity
readout of data pits beneath a 100μm thick cover layer on an optical Blu-Ray Disc. If realized commercially, the increase
in data density could be 3X today’s Blu-Ray technology. A distinct difference between this work and other work with
SILs in optical data storage is the relatively thick cover layer of 100μm. Recently, there has been interest in discovering
new ways to apply the technology and methods used in optical data storage for other means. The inherent design of the
HBD objective to image through a shallow layer of dielectric material may lend itself to be used as an effective means
for characterizing subsurface damage in optical materials. This research will furthermore investigate the HBD objective
as a means of detecting subsurface damage.
Infra-Red (IR) objective achieves a few micrometers of spatial resolution with high Numerical Aperture (NA) of about 0.75, for example, in mid-IR. However, submicron resolution is hard to achieve in Mid-IR because of the long wavelength compared to the visible range. To overcome the limitation, a solid immersion lens (SIL) is incorporated into the conventional objective so that the high refractive index of SIL contributes to obtain the high spatial resolution image of sample immersed in SIL. Germanium is a typical material of SIL in the infrared wavelengths because of the high refractive index and the high transmittance. In our study, we fabricated a Germanium-SIL using the quantified parameters of the ultra precision machining. The parameters are tool rake angle, cutting speed, feed rate, and depth of cut. The surface shape of the fabricated SIL was measured with the accuracy of 0.0376 μm in RMS and 0.3159 μm in P-V. We applied the fabricated SIL to a custom IR objective to investigate the improvement of its spatial resolution. Optical performance of the IR objective was evaluated with and without SIL. As results, the IR objective with SIL achieved 1.23 μm of the spatial resolution from the 3.9 μm of IR objective without SIL
Combining high-contrast imaging and astrometry in a single space mission would enable efficient detection and characterization of single- and multiple- planetary systems around nearby stars, allowing determination of planetary mass, composition, atmosphere, and system architecture. These science goals can be achieved using a 2m wide-field (>0.1deg2) class telescope equipped with two instruments: a high-performance coronagraph to perform direct imaging, and a wide field camera to achieve sub-microarcsecond astrometric accuracy. However, these measurements are only possible if there are no relative distortion changes between astrometric observations. At sub-microarcsecond accuracy regime, even space optics suffers from dynamic distortions in the optical system and dominates the error budget. We propose to utilize a diffractive pupil, in which an array of dots on the primary mirror generates polychromatic diffraction spikes in the focal plane to calibrate the dynamic distortions of the optical system. According to simulations, this technique would allow to obtain 0.2microarcsecond single-visit precision astrometric accuracy. In this paper we present the laboratory results that demonstrate the diffractive pupil concept on wide-field images. We also discuss simulations and experiments performed at the NASA Ames ACE test bed, demonstrating that the diffractive pupil does not affect the coronagraph performance down to 2x10-7. Finally, we assess the compatibility of a diffractive pupil telescope with a general astrophysics mission, showing that the spikes do not impact wide-field observations.
We have characterized a photoresist used for the fabrication of gray-scale diffractive optic elements in terms of Dill's and Mack's model parameters. The resist model parameters were employed for the simulations of developed resist profiles for sawtooth patterns executed by solving the Eikonal equation with the fast-marching method. The simulated results were shown to be in good agreement with empirical data.
For the application to the 5mm height optical drive, we have developed a small optical pick-up module within its dimension of 3.0×2.0×5.5mm, by integrating refractive and diffractive optical elements with laser diode and photo diodes assembly.
We estimated the process margins of various cell structures and process problems for full chip process under extreme resolution limit of exposure tool. Therefore, optimizing off axis illumination (OAI) condition for various structures obtained the fine pattern and wider process margin using simulation and experiment. From our experiment, we should use as higher numerical aperture (NA), smaller R and smaller as possible to reduce critical dimension (CD) difference between dense and isolated patterns. Process margins are obtained more than 8 percent exposure latitude (EL) and 0.5 micrometers depth of focus (DOF) for each cell. However, we can consider using of attenuated phase shift mask to improve the exposure and DOF margin. We find that real full chip process induces the critical problems such as isolated line (I/L) and space (I/S) pattern variation due to lens aberration, partial coherence effect, mask error effect, and optical proximity effect. These effects play a role to determine the design rule of cell and periphery structures. In spite of good lens quality, variation of I/L and I/S pattern for various exposure conditions is almost 40nm or more compared to line and space pattern. These phenomena are becoming the critical issue to fulfill the full chip process of 130nm lithography. By optimizing mask error effect, isolated and dense pattern bias, and OAI, we can achieve 130nm technology with 248nm KrF lithography.
In this paper we investigated the feasibility of printing sub-0.13 micrometers device patterns with ArF and KrF lithography by using experiment and simulation. To do this we evaluated various cell structures with different sizes from 0.26 micrometers to 0.20 micrometers pitch. In experiment 0.60NA ArF and 0.70NA KrF exposure tools, commercial and in house resists and bottom anti-reflective coating (BARC) materials are used. To predict and compare with experimental data we also used our developed simulation tool HOST base don diffused aerial iamge model. We found that ArF lithography performance is a little bit better than KrF and therefore 0.70NA KrF lithography can be used up to 0.12 micrometers design rule device and 0.60NA ArF lithography can be used up to 0.11 micrometers . But to get more than 10 percent expose latitude, 0.13 micrometers with KrF and 0.12 micrometers with ArF are the minimum design rule size. However to obtain process margin we had to use extreme off-axis illumination (OAI) which results in large isolated- dense bias and poor linearity including isolated pattern. Using higher NA can reduce ID bias and mask error factor. For contact hole it is more effective to use KrF lithography because resist thermal flow process can be used to shrink C/H size. Our developed ArF resist and BARC shows good performance and we can reduce k1 value up to 0.34. Through this study we verified again that ArF lithography can be applied for sub-0.13 micrometers device through sub-0.10 micrometers with high contrast resist and 0.75NA exposure tool.
In order to improve the overlay accuracy in electron lithography, we have investigated the optimization of alignment key that included a ratio of alignment key according to scanning beam size, an optimum key depth/width, and material's dependency. The alignment repeatability of key, has the same ratio with scanning beam size, appears good results as compared with the other ratio. Scanning beam size also correlates with an alignment key width. As a process sequence of CMOS device, the key width of under layer is changed by the thickness of deposited materials, because of the deposition on side-wall. Therefore, the scanning beam size should be optimized for each step. In each material, there exists the critical thickness not affecting on the alignment reading repeatability. The standard deviation, which is calculated by measurement of key position with critical thickness, is less than 20 nm. We have results of the critical thickness of various materials. SiO2 and Si3N4 do not affect on the alignment signal, but doped WSix, Al, and doped poly-silicon are very sensitive because of back-scattering electrons. Using the optimized align key of WSix/doped poly-Si, the standard deviation was less than 10 nm. Otherwise, non-conducting layer must be etched more than 7000 angstrom. In this case, the standard deviation is larger than that of conducting materials, as more than 20 nm. We have results of optimum condition of alignment key in order to enhance the overlay accuracy. The standard deviation of total overlay accuracy is less than 50 nm which corresponds to 150 nm design rules device fabrication.
The global proximity effects of densed line, semi-isolated line are studied for conventional illumination, off-axis illumination, and finally off-axis illumination in combination with attenuated phase shift masks which have transmittance of 4% and 8%, respectively, by experiments and simulations. To analyze the behavior of proximity effects, the lithographic performances of the super resolution technique are investigated comparing the cross-sectional view of resist pattern profile, useful depth of focus, and the curves of linewidth vs. defocus for 0.30 micrometers , 0.35 micrometers , and 0.40 micrometers pattern size, respectively. The global proximity effect is quantitatively analyzed by fitting the curve for densed line and isolated line to 2nd order polynomials. Off- axis illumination with attenuated phase shift mask is very effective to minimize the proximity effects for the pattern size less than 0.40 micrometers , and have useful depth of focus of 1.0 micrometers for 0.30 micrometers patterns.
This paper describes the phase shift mask (PSM) effects in view of production using i-line lithography. For the PSM technology, it was hard to control process because the process condition was limited by the exposure tool. To fabricate the 256MB DRAM with 0.25 micrometers minimum feature size (MFS), we evaluated the PSM including attenuated type for conventional patterns and a 0.25 micrometers cell array using positive and negative tone phase shift mask for actual process. Furthermore, we applied various approaches to get a sufficient depth of focus (DOF) and high resolution using an i-line system with 0.57 NA, an off-axis illumination system, low partial coherence factor, and process in cases of alternating, subresolution, and attenuated type of phase shift mask. As a result, even if pattern delineation was possible, we should optimize design, topology structure, and process to get enough DOF margin, good uniformity, and high repeatability for device fabrication.
Phase-shifting mask allows remarkable improvement of the resolution and depth of focus than is possible with conventional mask. In this paper, we examine the optimum coherence factor ((sigma) ) and numerical aperture (NA) by considering the process margins of conventional and alternating shifter L&S patterns on high NA i-line stepper and next we investigate the possibility to apply this optimum parameter in real devices of 0.25 micrometers - 0.35 micrometers design rules. We evaluate the process window, line and space duty ratio, CD difference by proximity effect, illumination uniformity, and neighboring linewidth variation with experimental and simulations including resist profile as well as aerial image. In this experiment, we obtained the DOF of 2.0 micrometers for 0.25 micrometers alternating shifter L&S with an optimum coherence factor on high NA i-line stepper and we can conclude that 256 Mb DRAM with 0.25 micrometers design rule could be printed with large DOF.
As the design rule of devices continues to shrink, the overlay margin of layer to layer continues to become smaller. Inter-field error of overlay can be compensated by alignment parameters of the exposure system, but intra-field error of overlay is very difficult to change within a field. This paper discusses the intra-field overlay error, especially that caused by oxidation and deposition processes of a metal-oxide-silicon (MOS) integrated circuit device. In an experiment, to analyze process induced affects on the intra-field overlay error of device, we monitored thermal process, film deposition, oxidation, lithography, etching, and implantation process and pursued the trend and sources of intra-field overlay error generated in wafer process. We analyzed the affects of film stress and thermal process by measuring box and box overlay marks using the KLA metrology system at the etch process step.
Phase shift mask ( PSM ) is a useful technique to higher the resolution and focus margin in the lithography process with sub-half micron range, which is limited by currently used process tools. PSM with i-line stepper is one of the leading candidates for mass production of 64M Bit Dram. In this study, in order to obtain the information about the basic trend and process limitation of PSM, we evaluated the PSM technique by simulation and lithographic experiment. However several difficulties were encountered when attempting to use the PSM in real process. These difficulties were mainly due to the process margin and variation in munufacturing a real device.
We simulated PSM by changing numerical aperture, patial coherence, focus, and pattern size for g-line and i-line. Intensity profiles of patterns were monitored for both conventional and phase shift mask ( alternating t>ye ). With those simulation results, we first analyzed the aerial image and studied the trend and limitation of PSM technology. Then we compared these results with experimental results of g-line and i-line process. Although the simulation and the experimental results showed that definable resolution limit and the resolution with depth of focus ( DOF ) margin were significantly increased by PSM technology, it was hard to control the process due to the errors occuring in manufacturing PSM. The study for resolution limit with marginal depth of focus led us to optimize the method how to approach the PSM from simulation. In addition, the process limitation and lithographic trend of PSM were investigated as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.