Heart segmentation is challenging due to the poor image contrast of heart in the CT images. Since manual segmentation of the heart is tedious and time-consuming, we propose an attention-based Convolution Neural Network (CNN) for heart segmentation. First, one-hot preprocessing is performed on the multi-tissue CT images. U-Net network with Attention-gate is then applied to obtain the heart region. We compared our method with several CNN methods in terms of dice coefficient. Results show that our method outperforms other methods for segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.