Printing technologies based on plasmonic structures have been intensively studied for their great advantages over organic colors and pigments. However, metallic nanoparticles have inherent plasmon damping and possess mainly electric-like resonances, thus there exists an urgent need for another degree of controlling the structural colors, for example the magnetic resonance modes. Here we propose truncated cone shaped silicon metasurfaces and numerically simulate their reflection characteristics. The designed metasurfaces are based mainly on magnetic Mie resonances because the strength of electric resonances is negligibly small compared with that of magnetic resonances. From numerical simulation, the intensity of the reflection peak reaches almost 90% and the full width at half-maximum (fwhm) of reflectance spectrum is 43nm. More detailed numerical analysis shows that distinct colors can be obtained giving a spatial resolution around 85000dpi. Specific colors with saturation close to 1 are available by selecting appropriate geometric dimension and period of the structure, which indicate the great application perspective of the proposed metasurfaces to produce well-defined colors covering the entire visible spectrum. The advantages of the designed metasurfaces are polarization-independence, cost-effective, stable, sustainable and CMOS(Complementary Metal Oxide Semiconductor)-compatible. Furthermore, the proposed structure works with a low aspect ratio of 0.46, which largely relieves the difficulty of process manufacturing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.