Historically, in a volume production environment, process induced variation in optical property (n&k) of film stack was
not significant for the most of applications using scatterometry. Many papers presented before addressed the CD variation
in the production by adopting the fixed optical property approach [1-8]. However, with shrinkage of device size, and
introduction of new material and process, n&k variation of some critical layers can not be ignored. In this paper, it presents
impacts on measured optical CD due to n&k variation of one critical film in a 70nm DRAM ArF lithography process at a
patterned area (A-layer). A solution to minimize the impacts using floating n&k in the scatterometry model is discussed,
developed and verified.
In advanced semiconductor processing, shrinking CD is one of the main objectives when moving to the next generation technology. Improving CD uniformity (CDU) with shrinking CD is one of the biggest challenges. From ArF lithography CD error budget analysis, PEB (post exposure bake) contributes more than 40% CD variations. It turns out that hot plate performance such as CD matching and within-plate temperature control play key roles in litho cell wafer per hour (WPH). Traditionally wired or wireless thermal sensor wafers were used to match and optimize hot plates. However, sensor-to-sensor matching and sensor data quality vs. sensor lifetime or sensor thermal history are still unknown. These concerns make sensor wafers more suitable for coarse mean-temperature adjustment. For precise temperature adjustment, especially within-hot-plate temperature uniformity, using CD instead of sensor wafer temperature is a better and more straightforward metrology to calibrate hot plates. In this study, we evaluated TEL clean track integrated optical CD metrology (IM) combined with TEL CD Optimizer (CDO) software to improve 193-nm resist within-wafer and wafer-to-wafer CD uniformity. Within-wafer CD uniformity is mainly affected by the temperature non-uniformity on the PEB hot plate. Based on CD and PEB sensitivity of photo resists, a physical model has been established to control the CD uniformity through fine-tuning PEB temperature settings. CD data collected by track integrated CD metrology was fed into this model, and the adjustment of PEB setting was calculated and executed through track internal APC system. This auto measurement, auto feed forward, auto calibration and auto adjustment system can reduce the engineer key-in error and improve the hot plate calibration cycle time. And this PEB auto calibration system can easily bring hot-plate-to-hot-plate CD matching to within 0.5nm and within-wafer CDU (3σ) to less than 1.5nm.
The challenging metrology application for scatterometry and CD-SEM is to accurately measure both CD and profile. To apply this metrology specifically to dual-damascene hole structures is critical for the back-end processing, in order to control both the CD and the process overall. This paper discusses applications of Optical Digital Profilometry-based scatterometry to the advanced 90nm node dual-damascene process. The application includes contact ADI, via AEI, via etch, and via fill. The results show that scatterometry can measure CD, as well as provide sidewall angle and profile information that is unavailable by CD-SEM. Correlations to CD-SEM and cross-sectional SEM are also presented. For future applications, scatterometry is a viable solution for 3D structures, and provides higher precision, and more metrology information than current metrology methods for critical dual-damascene processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.