With the development of integrated photonic circuits, optical waveguide microdisk resonators (MRR) devices which can be easily integrated with photonic chips are becoming more and more important in optical communication systems. As the core execution unit to improve response sensitivity, field-programmable gate array, optical waveguide MRR has high applicability in esonators due to its smaller mode volume, and larger free spectral range (FSR). Specially, SOI waveguide fabrication technology is easy to be compatible with CMOS foundry processing and integrated circuit technology with smaller size and lower cost, so it can overcome the shortcomings of micro resonators fabricated by other materials. And SOI waveguide MRR has important research significance and distinguished application prospects, which has considered to be the future large-scale integrated photonic circuit basic devices. Because of its powerful optical signal processing ability, MRR has been widely used in various optical systems. With the advantages of simple manufacturing process, ease integration, and multitudinous functions, the waveguide MRR has become the basic structural unit of integrated photonic system and considered as the basic device of large-scale integrated optical path. Based on the high thermo-optic (TO) coefficient of Si material, the tunable function of the SOI MRR can be realized by TO modulation. A waveguide MRR with large tuning range, low optical transmission loss, simple electrode fabrication method, and high TO efficiency is proposed. In order to enhance the applicability of the designed SOI waveguide MRR at different wavelength bands, a tunable SOI MRR was designed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.