Taking Meitanba mining area in Hunan Province as an example, by using the achieved high accuracy and high resolution point-cloud data and digital image data by airborne LiDAR system, this research built the 3D landform of the vegetation-covered areas, got the features of micro landform in the areas, and offered quantity factors for research of geo phenomenon which related to regional landforms and geoscience process. Based on the high accuracy data from airborne LiDAR system and combined with the basic data of geology,the forming mechanism of the karst collapse of Meitanba mining area in Hunan Province and the relationship of surface collapse and mining activities are analyzed. The research mentioned that the reason of the karst collapse in Meitanba mining area is with the basic conditions of forming karst landform and plus the increasing water flow and exchange rate of the underground water, and then the water level decrease, finally different degrees of the regional karst collapse have happened.
Lake is one of the most type important wetland, remote sensing technology applied on wetland had become a research hot-spot of wetlands. Automatic or semi-automatic extraction using computer wetland information extraction can improve the efficiency in the human, material, etc. From remote sensing images extract wetland information is important for Wetland research and putting forward Utilization. In this paper, Yellow River source region for the test area, we used different methods to extract lake information from ETM + images acquired different results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.