We recover the shape and orientation of an object by analyzing the spatial phase and amplitude of a transmitted optical beam using a single pixel. We experimentally demonstrate using the complex spatial spectrum of multiple sequential measurements of a varying probe beam. Specifically, we transmit a structured beam that is tailored to have one mode of the Laguerre-Gaussian (LG) modal basis set, and the beam is varied to sequentially have a unique azimuthal (l) and radial (p) value. When each uniquely structured beam probes an object, there will be coupling of power from the pure mode to other LG modes. The complex phase and amplitude coefficients of this modal power coupling will provide a “signature” of the probed object’s 2D structure, and this signature can be detected using a single pixel. We identify a “fan-shaped” object with an opening angle of 120˚ and different angular orientations by analyzing the corresponding complex spatial spectrum of multiple sequential measurements, such that each subsequent tailored mode has l and p indices in the range -15 - +15 and 0-30, respectively. Results show that the amplitude spectrum is insensitive to the object’s angular orientation, whereas the phase spectrum predictably shifts with orientation. Additionally, we demonstrate that an irregular image with a ‘SC’ logo can be reconstructed using the complex modal spectrum. The structural similarity (SSIM) of the reconstructed image increases as the number of modes increases. Specifically, the SSIM increases by 83.5% when the number of modes increases from 36 (6 by 6) to 961 (31 by 31).
We experimentally demonstrate three-fold wavelength multicasting of a 64-quadrature-amplitude-modulation (QAM), 120-Gbit/s data channel using a microresonator Kerr frequency comb and nonlinear wave mixing. The multicasting is achieved with a data signal and four comb lines serving as the pump lasers in a periodically poled lithium niobate (PPLN) waveguide. Minimal extra phase noise from the pumps is introduced into the multicast copies due to the mutual coherence between the Kerr comb lines. All three multicast copies achieve a bit-error rate (BER) <= 3.5E-3, which is below the forward-error-correction threshold. Both the error vector magnitude (EVM) and BER performances show <0.5-dB optical signal-to-noise ratio (OSNR) penalty for the multicast copies compared to the original data signal.
The raised cosine is a bandwidth efficient pulse shaping waveform with relatively high peak to average power ratio (PAPR) for smaller excess bandwidths. Reducing the PAPR while maintaining the shaped waveform integrity and bandwidth efficiency increases the transmission rate by utilizing the spectrum more effectively. In this paper, we modify the raised cosine by reducing the adjacent symbol contribution to the PAPR with small increase in the Error Vector Magnitude (EVM) and the required bandwidth over the raised cosine waveform. The attained PAPR reduction is on the order of 1.5 dB for the smaller excess bandwidth.
The raised cosine waveform is a common efficient waveform to control the bandwidth reduction of a communications signal at the cost of controlled Inter Symbol Interference (ISI) with relatively large Peak to Average Power Ratio (PAPR). Reducing the PAPR has been addressed extensively in the literature using methods such as the clipping and coding the data among others. In this paper, we reduce the PAPR by windowing the raised cosine waveform to minimize contributions to PAPR with minimal spectral growth. We simulate the modified raised cosine to determine the reduction in PAPR for various Quadrature Amplitude Modulation (QAM) orders and excess bandwidths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.