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ABSTRACT

The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete
its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron)
integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations
behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed
and new science studies have been investigated to aid in technical performance and design requirements. In
this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings,
sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging
camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics:
Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies.
We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

Keywords: Infrared Imaging, Infrared Spectroscopy, Integral Field Spectrographs, Adaptive Optics, Data
Simulator, Giant Segmented Mirror Telescopes

1. INTRODUCTION

While ground-based giant-segemented telescope (GSMTs) - like the European Extremely Large Telecscopes (E-
ELT),1 Giant Magellan Telescope (GMT),2 and the Thirty Meter Telescope (TMT)3 - are still several years away
from completion, important groundwork is being laid right now to build a strong foundation for their first light
programs. The scientific capabilities of GSMTs will both complement and extend the astronomical discovery
space of upcoming facilities like the James Webb Space Telescope (JWST),4 the Wide Field Infrared Survey
Telescope (WFIRST),5 and the Large Synoptic Survey Telescope (LSST).6 For instance, spectroscopic follow-up
from GSMT instruments will be essential to the LSST mission. Additionally, when compared with NIRspec7

integral field spectrograph and NIRcam8 on JWST, instruments like IRIS (InfraRed Imaging Spectrograph)9 for
TMT will be able to provide 25 times more angular resolution, and for spectroscopy 2-3 times higher spectral
resolving power. The diffraction-limit of a 20m telescope or greater aperture affords scientific potential that is
unique to all current and future facilities, and will address areas that are fundamental to our understanding of
the universe.

IRIS is the first-light instrument being designed to operate with the advanced adaptive optics (AO) system,
NFIRAOS,10 for the TMT. IRIS science instruments include a near-infrared (0.84 - 2.45 micron) integral field
spectrograph (IFS) and imaging camera, as described in greater detail in Larkin et al.9 IRIS with NFIRAOS will
make use of three on-instrument wavefront sensors (OIWFS)11 to provide focus and tip/tilt correction. During
the current preliminary design phase (2015-2016) of IRIS, the technical team has developed a new optical design
that allows the IFS and imaging camera to share common optics and provide a unique parallel observing mode,
where the IFS and imaging camera operate simultaneously.

We have assembled a large international science team from six countries to define IRIS’s capabilities, require-
ments, and science case studies. Our team has investigated many science cases that IRIS will offer to a range
of astronomical fields from the solar system to first light galaxies.12,13 An end-to-end simulator for both the
IRIS IFS and imaging camera has been developed to explore point source and resolved source sensitivities for
particular use cases.14,15 This has been helpful for exploring astrometric and photometric capabilities for IRIS
and other technical requirements.16 For instance, this software was used to perform a detailed study of IRIS’s
potential for measuring the masses of supermassive black holes (SMBH),15 and to explore potential measure-
ments of first light galaxies (z & 9). Our team has continued to investigate new IRIS science cases. In this paper,
we present the latest simulations for IRIS. Section 3.1 describes monitoring solar system bodies, while Section
3.2 discusses parallel imaging and spectroscopy of the Galactic Center. In Section 3.3, we discuss the possibility
of resolving an AGN torus (Section 3.3), and describe detailed study of gravitationally-lensed distant galaxies in
Section 3.4. These are just a representative sample of IRIS and TMT science cases that highlight the uniqueness
of combining these diffraction-limited data sets.
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Figure 1. Keck AO/NIRC2 simulation image compared to simulated IRIS image of Io. Both Simulations made use of the
Galileo Solid-State imaging camera data set. IRIS will be able to sample down to ∼12 km using the 4 mas plate scale of
the imager and IFS. The typical size scales of volcanos on Io’s surface range from 40 to 200 km.

2. DATA SIMULATOR

The IRIS team has developed a full end-to-end data simulator for both the imager and integral field spectro-
graph.14,15 The simulator has been used to determine IRIS sensitivities, explore a range of science cases, and
help to investigate instrumental requirements. We have previously described the technical details for the sim-
ulator and presented direct point source and resolved source sensitivities. Briefly, the simulator generates the
predicted signal-to-noise (S/N) of an image or IFS data cube assuming realistic noise, a background model, and
point spread functions (PSF) from TMT and NFIRAOS. From a user perspective, the simulator needs an input
of a flux calibrated image, a spectrum for the IFS, and observing parameters (e.g., filter, plate scale, exposure
time, number of frames).

3. SELECTION OF IRIS SCIENCE CASES

3.1 Solar System

IRIS will be tremendously advantageous for a number of Solar System science studies, ranging from near earth
asteroids (NEAs), planets, dwarf planets, gas giant moons, and transneptunian objects (TNOs). Using the data
simulator, we have explored two new IRIS Solar System cases: the Pluto/Charon system and Jupiter’s active
moon, Io.

3.1.1 Io

Io has the most active and volatile surfaces in our Solar System due to strong-tidal interactions with Jupiter.
Planetary scientists and geologist have great interest in Io’s frequent violent volcanic eruptions, with hundreds
of identified volcanic sites. Even though Io has been studied in detailed by spacecraft missions like Voyager
and Galileo and other telescopes, there are still unanswered questions about the eruption characteristics like
the frequency, temperatures, lava composition, and eruption type that require regular monitoring of Io’s sur-
face. Currently, ground-based integral field spectrographs and AO systems have been an excellent resource for
discovering new volcanic regions and investigating the compositions of these eruptions.17–20

With the IRIS data simulator and Galileo imaging at 1µm, we simulated an IRIS H-band image of Io using
a PSF calculated near zenith and median conditions. The Galileo image, taken from the Solid-State-Imaging
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Figure 2. Simulated IRIS three color (J , H, and K) image of Pluto and Charon, assuming a single 100 second integration
time with no deconvolution performed. In comparison, HST observations only a sample ∼10s pixels across Pluto and
need to perform extensive deconvolution routines on multiple phases of observations.27 In this single observation, the
IRIS imager at the 4 mas scale will resolve a spatial scale of ∼82 km on both Pluto and Charon.

camera∗, was scaled to a total flux of 5.8 mag in H-band with an exposure time of only one second. In Figure
1, we compare these simulated observations to the current capabilities of the Keck AO system with NIRC2 at
H-band. The exquisite resolution of IRIS+TMT is exemplified in this comparison, showing that the instrument
will be excellent for probing Solar System bodies in detail. IRIS will resolve structures on Io as small as ∼20
km, only a factor of 2 larger than the resolution of Galileo.

3.1.2 Pluto and Charon

The New Horizons21 spacecraft was able to image the surface of the Pluto at unprecedented detail, and conduct
essential spectroscopic observations of its atmosphere. From this mission, we learned that Pluto has an active
surface22 and atmosphere, with volatile ices23 and sheets across the surface, as well as volatile atmospheric
gases.24 There are also seasonal and global latitude weather changes observed on Pluto that need further
monitoring on monthly and yearly timescales. The Pluto/Charon system has an additional four small moons,
and the combination of HST and New Horizons data has been excellent for investigating their dynamics and
stability.25 With IRIS, we will be able to monitor all of these bodies with high astrometric accuracy.

Using the highest resolution images of Pluto and Charon from the New Horizons spacecraft, we simulated
IRIS performance and capabilities. We made use of optical images from the Long Range Reconnaissance Imager
(LORRI),26 and scaled the optical bands based on the spectral shape of Pluto and Charon to the near-infrared
passbands (J , H, and K). Figure 2 is a three color composite simulation with the IRIS imager (4mas plate
scale). We find that IRIS easily resolves features on both Pluto and Charon. Each resolution element will be
able to resolve ∼100km regions across the surface of Pluto and take high-resolution spectroscopy. These type of
studies will be superb for monitoring seasonal and atmospheric changes across the globe. In addition, IRIS will
be used to monitor Pluto and Charon’s surface with the IFS at relatively high resolution spectroscopy (R=4000,
8000). The diffraction-limit of TMT and IRIS will offer >500 IFS sampling points across Pluto’s surface, as seen
in Figure 2, which is an order magnitude higher than all previous HST and future JWST IFS observations.

3.2 Galactic Center

The Galactic Center is the closest laboratory for studying the environments and fundamental physics of SMBH28

and offers very unique science cases for TMT. Both the IRIS imager and IFS have been carefully designed to

∗http://photojournal.jpl.nasa.gov/catalog/PIA00494
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Figure 3. Simulation of an IRIS imager observation using K (2.2 µm) broadband of the Galactic Center with the expanded
field of view of 32.8” x 32.8”. In a single shot using the 0.004” plate scale the IRIS imager will be able to capture the
inner-arcsecond sources, Sgr A*, the extended stellar population, and essential astrometric reference frame sources of
8 masers. This simulated observation represents only 20 seconds of exposure time. Based on the extrapolated stellar
population IRIS would be able to detect 500,000 stars down to K < 25 mags.
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characterize the surroundings of the SMBH, SgrA*, at the Milky Way’s center. The high relative astrometric
accuracy of 30 µas will offer a test of General Relativity and probe the distribution of dark matter through orbital
monitoring of the stars surrounding SgrA*.29 The estimated astrometric accuracy is based on a reference frame
that makes use of several radio maser sources with accurate positions in the Galactic Center. Currently, the
limited field of view of Keck and VLT observations means that the observations have to be dithered to capture
all of these masers. These dithers and the optical distortion severely limit the astrometric accuracy achieved at
the Galactic Center today. Using the IRIS expanded imager capability (∼34”x34”) we will be able to observe 8
maser sources in a single observation, which will greatly improve the astrometric accuracy in this field. This is
illustrated in Figure 3 that shows an IRIS simulation of a single K-band integration on the Galactic Center at
median conditions and airmass from Maunakea. The improved astrometry is essential for measuring the orbits
of current and new inner-arcsecond sources surrounding Sgr A* and exploring the fundamental physics of the
SMBH.

IRIS IFS will yield greater accessibility and ease of studying the stellar population at the Galactic Center.
The young stellar population near SgrA* has puzzled astronomers, as young massive stars should have difficulty
forming in close proximity to a SMBH. Researchers have thus far been limited to studying only the most luminous
stars in the area, including OB main sequences stars, red giants, and Wolf-Rayet stars. Currently, OSIRIS on
Keck is able to achieve spectroscopy with sufficient SNR to measure spectral types and radial velocities for Kp
< 15.5 mag stars.30 In contrast, IRIS is predicted to have the sensitivity to allow for high SNR spectroscopy
on Kp = 20 - 21 mag stars. These sensitivities and high angular resolution will allow researchers to study the
low mass-end of the main sequence, which will be crucial for investigating the stellar population. They will
also provide essential radial velocity measurements to couple with the proper motion monitoring via imaging for
deriving 3D orbital solutions.

The shortest period star (S0-102) identified to-date among the inner-arcseond sources surrounding SgrA* has
a period of 11.5 years.31 IRIS is expected to identify multiple sources with shorter orbital periods (1-2 years),
which will be instrumental for fundamental physics studies like testing General Relativity. One of the current
challenges with Keck and VLT spectroscopy is identifying the accurate spectral types for faint Galactic Center
sources. For instance, S0-102’s current spectral type is ambiguous between either an early-type or late-type star
due to insufficient SNR. In Figure 4, we show a comparison between IRIS simulations using synthetic spectral
models of early- and late-type stars at K-band to the latest Keck observations of S0-102. The resolution and
sensitivity of the IRIS IFS will be capable of easily distinguishing between absorption features like Brγ and Na-I.
Resolving these absorption line features will also be crucial for measuring accurate radial velocities, which will
be included in the full 3D orbital solution.

3.3 Nearby Galaxies

There are a diverse number of nearby galaxies that can be studied using the IRIS imager and IFS. The IRIS
science team has focused on variety of science cases, including: measuring SMBH masses; studies of galactic
nuclei and AGN; chemical enrichment histories of galaxy types; metal enrichment of galaxy clusters; dynamics
of dwarf galaxies; and probing luminous and ultra-luminous infrared galaxies. The IRIS diffraction-limited
capabilities will allow exquisite stellar population studies in galaxies to distances as far as the Virgo cluster (16.5
Mpc), and will be able to resolve individual stars in these systems. Similarly, IRIS high angular resolution offers
the exciting possibility of resolving and conducting dynamical studies of galactic nuclei and of gas and stars
surrounding AGN. Recently, our team explored IRIS capabilities of resolving an AGN torus at near-infrared
wavelengths.

3.3.1 Resolving AGN torus

The unified model of Active Galactic Nuclei (AGN) posits that different observational classes of AGNs can
be explained by an orientation effect.32 Specifically, it is thought that differences between radio-quiet AGN
classifications are due to different orientations of an optically thick, torus shaped accumulation of dust which
obscures the AGN’s central black hole and accretion disc. Current telescopes have not been able to directly
resolve this proposed dusty torus, a feat which could help determine the extent to which orientation effects are
responsible for differences between AGN classifications.

Proc. of SPIE Vol. 9909  990905-6



2.0

1.5

1.0

0.5

,

_Keck Observed SO-102

fi

r

1

VIT /IRIS Early -type Simulation

_TMT /IRIS Late -type Simulation

cr5.aszz
2.14 2.16 2.18 2.20 2.22

Wavelength (micron)
Figure 4. Comparison between 6.75 hours of observations from Keck on a Galactic Center source to only 15 minutes of
an observation from the IRIS simulator. The inner-arcsecond source, S0-102, is simulated using the Kn3 filter with the
4mas plate scale. We assume that S0-102 has K=17.5 mag. The IRIS simulation assumes an total integration time of
900 seconds with a PSF at Zenith angles observable from Mauna Kea with median conditions. Since the current Keck
observations are unable to distinguish the spectral type of S0-102, we simulate both an early-type and late-type star for
IRIS+TMT. The IRIS simulation shows that we can achieve an integrated S/N of 270. In contrast, the Keck data has
a 900 second integration with 27 frames and achieves a S/N of 27. TMT+IRIS which will easily measure the spectral
type of the source and distinguish between multiple stellar population models. These simulations highlight the unique
capabilities that the IRIS IFS will have on the Galactic Center sources for stellar population studies and radial velocity
measurements.

To determine whether IRIS will be able to resolve an AGN torus, we constructed a model for the torus of
NGC1068 (the brightest Type II Seyfert galaxy) to use in the IRIS simulator. We assumed that the three major
sources of flux at λ = 2.2 microns originating from the torus region of NGC1068 are the accretion disk, the
torus itself, and diffuse stellar emission. But a VLT interferometry study estimated that the contribution of
the accretion disc emission to the total flux at λ = 2.0 microns is negligible compared to the torus emission.33

Therefore, our torus model (see Figure 5a) is composed of the following two components: a Sérsic profile (for
the diffuse stellar emission) combined with a CLUMPY torus model (clumpy.org).

The geometric parameters of the Sérsic profile were obtained via fitting to the HST F222M observation of
NGC1068. The CLUMPY torus model was generated assuming a distance of 12.5 Mpc, with an angular scale of
0.0167”/pc. The fixed torus parameters were assumed to be the MAP values of the Bayesian Clumpy fitting.34

The variable parameters Y and q, where Y is the extension of the torus (estimated as the ratio of the inner and
outer edge of the torus) and q is the index of the radial distribution of the clouds, were chosen to be Y = 5 and
q = 2, representing a small and compact torus. The relative contributions to the total flux from each component
(i.e., the torus and the Sérsic model) was scaled such that, in a 0.5 arcsec aperture centered on the AGN, 55%
of the total flux originates from the torus and 45% originates from diffuse stellar emission - these percentages
were deduced through analysis of MMT-POL observations of NGC1068 in the K ′ filter (λc = 2.20 microns,
∆λfwhm = 0.08 microns).35

Simulated observations of the modeled torus using both IRIS and Keck were generated. Figure 5b shows the
image detected by Keck (for 1 sec of integration time in the K-band) and Figure 5d shows the image detected by
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Figure 5. (a) Model of NGC1068’s torus region (λ = 2.2 microns, 0.004” per pixel), an archetypal Type II Seyfert
galaxy. (b) Simulated Keck observation (K band, 0.01” per pixel, 1 second exposure) of the model with the corresponding
SNR shown in (c). (d) Simulated IRIS observation (K band, 0.004” per pixel, 1 second exposure) of the model with the
corresponding SNR shown in (e). The IRIS simulated images clearly resolve the structure and orientation of the simulated
torus, something that is not currently possible given the Keck simulations.
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IRIS (also for 1 sec of integration time in the K-band). Figures 5c and 5e show the corresponding signal to noise
ratios for each pixel obtained by considering the noise from the detector and sky. We find that IRIS will have
sufficient contrast and resolution to resolve the AGN torus of NGC1068, an exciting possibility for confirming
the unified AGN model. Our simulations also imply that IRIS will have the ability to resolve torii for other
nearby Seyfert systems, opening up a new and exciting science opportunities. This will be incredibly powerful
when utilizing the IFS at R=4000 and even higher at R=8000 for characterizing the dynamics of the torus and
spectral characterizations.

3.4 Distant Galaxies

IRIS will be uniquely positioned to conduct spatially resolved near-infrared spectroscopy of distant (z >1) young
galaxies on a range of science topics. Resolved spectroscopy will be essential for spatially resolving rest-frame
ultraviolet emission lines, like, Lyα and Hα, from star-forming regions in the galaxies and/or any potential
AGN, as highlighted in our team’s previous simulations.13 IRIS will also be superb for conducting resolved
stellar population studies of distant galaxies. This will be critical for combining the resolved dynamics of stars
with the nebular gas observations at giant molecular cloud resolutions. Combining this with the magnification
gain of gravitationally-lensed systems will be even more powerful, and the finer plate scales of IRIS will be
uniquely positioned compared to other facilities like JWST.

Exploring transients in distant galaxies is an exciting area of exploration in which IRIS will play a roll.
Identifying and studying the local environments of supernovae (SNe) and transients in z > 2 galaxies will
be essential for understanding their progenitors and their connection to galaxy properties. The IFS will be
well-suited for identifying the spectral signatures in distant SNe, superluminous supernovae (SLSNe),36,37 and
potentially optical counterparts to elusive fast radio bursts.38 IRIS’s sensitivity will also provide important
constraints on the properties of distant Gamma Ray Bursts, using them to probe the intervening inter-galactic
medium.

The parallel mode of IRIS will provide extraordinary data sets on deep extragalactic fields. While spectro-
scopic observations are being made on a particular high-redshift galaxy (z > 1), the imager is now designed to
be able to take simultaneous observations. With this mode, IRIS imager be able to achieve deep observations
within 20 minutes that are comparable to the Hubble Deep Fields. This level of multiplexing will be outstanding
for galaxy studies at all distance scales, as further described in Larkin et al.9

3.4.1 Resolved Spectroscopy and Imaging of Gravitationally-Lensed Galaxies

Strong gravitational lensing provides a powerful way of studying high-redshift galaxies at high angular resolution
with greater sensitivity to probe down to fainter galaxies and lower-surface brightness regions. Current Keck and
VLT AO studies of high-redshift galaxies are limited to the brightest and most massive star forming galaxies,
with the typical angular resolution of ∼1 kpc.39 Lensed galaxies with large magnifications can an get an increased
resolution by 5-20x and when combined with IRIS+TMT it will open a new window for studying distant galaxies
at even Giant Molecular Cloud size scale (10s of parsecs) enabling direct comparisons to galaxies in the local
Universe. Even using ALMA at its longest baselines will only provide 20 mas resolution, which is 5× larger than
the highest resolution achievable by IRIS+TMT.

Using one of the highest resolution images ever taken by ALMA of a gravitationally-lensed galaxy (SDP.8140),
we generated an IRIS simulation of its expected stellar continuum emission. SDP.81 was imaged by ALMA for
the science verification campaign41 of their longest baseline (∼15 km). SDP.8142 is a gravitationally-lensed,
dusty, star-forming galaxy at z=3.042. The lens is a galaxy at z=0.2999. The background galaxy is almost
perfectly aligned behind the lens such that it produces an Einstein ring. With this lensing configuration, SDP.81
is magnified by a factor of 11. At the 15 km baseline, ALMA’s spatial resolution is ∼23 mas or 180 pc at z=3.042.
Taking into account the lens model, the source plane is able to sample at ∼10 pc resolution.

To generate a simulation image for both Keck NIRC2 and TMT IRIS, we first apply a 5σ threshold on the
ALMA 1.0 mm image in order to ensure that we are including real features for our simulations. We then assume
the stellar continuum is spatially coincident with the dust emission. This assumption may not be true, but
it allows us to simulate a representative stellar surface brightness profile of the galaxy. We then fit spectral
energy distributions to Herschel (250, 350 and 500 µm), SMA43 (880 µm) and MAMBO (1.2 mm) data using
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Figure 6. IRIS simulation of a distant strong gravitationally-lensed galaxy. (LEFT) Original ALMA 1.0 mm image
of the gravitationally-lensed galaxy SDP.81 at z=3.042 with 23 mas resolution used for Keck/NIRC2 and TMT/IRIS
simulations. (MIDDLE) A zoom-in of Keck/NIRC2 K-band simulated image of the arc assuming that the stellar continuum
is attenuated by a Calzetti dust law with an AV =3. (RIGHT) IRIS imager K-band simulation using the same parameters
as Keck/NIRC2. The 23 mas structures are clearly resolved with IRIS, and at the highest spatial resolution it will be able
to resolve structures ∼5× smaller than ALMA. Both simulations were performed with the same total integration time of
8 hours for a direct comparison.

SDP.81 templates.44 Next, we estimate the stellar continuum from the SED template redshifted into K-band.
Finally, using a Calzetti45 dust attenuation law, we apply a range of dust attenuations (AV =0-7) for a diverse
set of IRIS simulations. Each of the simulations are run with 300 second integrations with 100 frame stacks (∼8
hours on source), shown in central and right panels of Figure 6. We choose an 8 hour total integration, so both
Keck/NIRC2 and TMT/IRIS simulations were at the same exposure time and observational parameters.

These simulations are a great example of how IRIS will be able to detect the stellar continuum for many
highly dust attenuated (Av >2) gravitationally-lensed sources. Compared to current ground-based observations,
IRIS will be able to measure lower surface brightness features at even greater S/N, as shown in Figure 7. Such
impeccable observations of high-redshift gravitationally-lensed galaxies will yield essential constraints of resolved
stellar masses, dust attenuations, star formation rates, metallicities, and kinematics.

4. SUMMARY

TMT with IRIS and NFIRAOS will offer unparalleled abilities in many diverse areas of astronomy. IRIS’s
capabilities of diffraction-limited sampling (4mas plate scales), moderate spectral resolving power (R=4000 -
8000) with an IFS, high astrometric accuracy (30 µas) with imaging, superb image quality from NFIRAOS,
and unique parallel imaging-and-IFS mode, will be extraordinary even compared to future astronomical mis-
sions on the horizon, like JWST and LSST. Our team has developed an imaging and IFS data simulator for
IRIS+NFIRAOS+TMT to explore a range of science cases. We have presented the most recent science cases that
will truly exploit the diffraction-limited capabilities of both the imager and IFS, including studies of Pluto and
Charon, the moon Io, spectroscopy of Galactic Center stars, AGN torii, and individual star forming regions in
gravitationally-lensed high-redshift galaxies. Our team will continue to use the data simulator to explore science
cases and investigate instrument requirements for IRIS during the final design phase starting in 2017.
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median SNR for IRIS+TMT is about 7, whereas with Keck the maximum well below 2. TMT+IRIS will be able to resolve
the stellar continuum in these dusty galaxies over lower surface brightness features with significant spatial coverage.
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L., and Wooff, R., “NFIRAOS: first facility AO system for the Thirty Meter Telescope,” in [Adaptive Optics
Systems IV ], 9148, 914810 (July 2014).

[11] Dunn, J., Reshetov, V., Atwood, J., Pazder, J., Wooff, B., Loop, D., Saddlemyer, L., Moore, A. M., and
Larkin, J. E., “On-instrument wavefront sensor design for the TMT infrared imaging spectrograph (IRIS)
update,” in [Ground-based and Airborne Instrumentation for Astronomy V ], 9147, 91479H (Aug. 2014).

[12] Barton, E. J., Larkin, J. E., Moore, A. M., Wright, S. A., Crampton, D., Simard, L., Macintosh, B., Côté, P.,
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