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Abstract—Compressive sensing (sampling) is a novel technology 
and science domain that exploits the option to sample 
radiometric and spectroscopic signals at a lower sampling rate 
than the one dictated by the traditional theory of ideal sampling. 
In the paper some general concepts and characteristics regarding 
the use of compressive sampling in instruments devoted to Earth 
observation is discussed. The remotely sensed data is assumed to 
be constituted by sampled images collected by a passive device in 
the optical spectral range from the visible up to the thermal 
infrared, with possible spectral discrimination ability, e.g. 
hyperspectral imaging. According to recent investigations, 
compressive sensing necessarily employs a signal multiplexing 
architecture, which in spite of traditional expectations originates 
a significant SNR disadvantage. 

Index Terms—Compressive sensing, Multiplex spectroscopy, 
Coded aperture imaging, Multiplex imaging, Fourier transform 
spectroscopy 

I. INTRODUCTION 

Compressive sensing is a novel technology that exploits the 
option to sample radiometric and spectroscopic signals at a 
lower sampling rate than the one dictated by the traditional 
theory of ideal sampling. The possibility of undersampling a 
signal without losing significant information is founded on the 
signal characteristic of admitting a sparse mathematical 
representation, which can be made accessible to an instrument 
throughout a specific integral transformation to be performed 
with a dedicated optical subsystem.  

Compressive sensing is a cutting edge technology 
belonging to the general field of signal compression, and its 
main feature is connected with the circumstance that 
compression takes place before signal registration, during the 
sampling phase. Due to this characteristic, compressive sensing 
promises exceptional savings for sensor design and realization 
in terms of the required memory for temporary data storage, 
bandwidth necessary for data transmission, electrical power 
consumption. In their turn, the above lesser requirements 
would originate supplementary mass, volume, and cost 
reduction. The possible impact of these expectations on the 
cost of future space missions could be remarkable, motivating 
new investigations and research programs concerning this 
extraordinary technology. 

This work addresses the theoretical issue of defining the 
maximum radiometric performance limit allowed for the 
compressive sensing technology. We show that, according to 
recent studies, signal multiplexing permits radiometric 
performance poorer than that allowed by a direct measurement 
method, bounding the maximum signal-to-noise ratio 
obtainable with the compressive sensing technology. Finally, 
we discuss the multiple paybacks originating by the 
compressive sensing technology. 

II. HISTORICAL BACKGROUND

Multiplex spectrometry [1,2] was developed in the early 
1950s as a remedy for the lack of array detectors in the infrared 
spectral interval, where the measurement required a time-
consuming scanning process for collecting all the spectral 
bands of interest by means of a single element detector. The 
adaptation of a telecommunication technique made possible to 
multiplex all the spectral samples through the unique 
photosensitive element, obtaining a higher amplitude signal 
and, possibly, a proportional reduction of the integration time. 
The overall acquisition time required to observe a wide spectral 
interval was therefore reduced by a factor equals to the number 
of spectral samples, without compromising the Signal-to-Noise 
Ratio (SNR). Conversely, this apparent radiometric advantage 
provided by the new multiplex technique could even be traded 
for a higher SNR, allowing the overall measurement time to be 
the same as that of traditional dispersive spectroscopy. 
Multiplexing spectroscopy received two alternative 
implementations: two-beam interferometers [1] and coded 
aperture dispersive spectrometers [2]. Two-beam 
interferometers (Fourier Transform Spectrometry or FTS) 
implement multiplexing by means of the set of harmonic 
functions, producing the cosine transform of the spectrum of 
the observed source. Instead, aperture coded dispersive 
spectrometers can implement various sets of orthogonal 
functions, such as the Hadamard, harmonic, Legendre 
polynomials, and so forth. Usually, the spectrum of the 
observed source modulates the selected set of orthogonal 
functions that are coded as a bi-dimensional spatial pattern of 
transmittance (or reflectance) in the input and / or the output 
aperture. The main difference between FTS and Multiplex 
Dispersive Spectrometers (MDS) is that FTS devices realize 
interferometric amplitude multiplexing while dispersive 
spectrometers put into operation intensity multiplexing. As a 
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common point, any multiplex spectrometers measure not the 
spectrum itself, but a complex transformation of it. Hence, such 
instruments require specific data pre-processing for 
transforming back the observed parameters into the spectrum 
of the observed source.  

OBJECT APERTURE RECORDERED
IMAGE

DECODING
PROCEDURE

RECONSTRUCTION

Fig. 1: The basic steps involved in coded aperture imaging. A multiple-
pinhole aperture is used to form many overlapping images of the object. The 
resulting recorded picture must be decoded, using either a digital or optical 
method. The resulting reconstruction is of higher quality than that obtained by 
using a simple pinhole. 

Multiplex Imaging (MI) is a relatively recent domain aimed 
at investigating those optical configurations and instrument’s 
features that provide some radiometric and Signal-to-noise 
Ratio (SNR) advantage when observing a remote source. The 
possible radiometric advantage of multiplex imaging is easily 
understood considering the simple example depicted in Fig. 1, 
where a multiple pinhole instrument get a coded signal made 
up of the superposition of many overlapping images of the 
same object. Superposition gives rise to the expected 
radiometric advantage, while the resulting signal can even be 
measured by a fast time-scanning procedure that can adopt a 
single-element detector. 

Compressive Sampling (CS) is a novel research domain 
founded on the paradigm that sparse signals can be 
undersampled without losing relevant information. Candès [3] 
has given the following striking description of CS: “Modern 
transform coders such as JPEG2000 exploit the fact that many 
signals have a sparse representation, meaning that one can 
store or transmit only a small number of adaptively chosen 
transform coefficients rather than all the signal samples…. 
This process of massive data acquisition followed by 
compression is extremely wasteful and raises a fundamental 
question: because most signals are compressible, why spend so 
much effort acquiring all the data when we know that most of it 
will be discarded? Wouldn’t it be possible to acquire the data 
in already compressed form so that one does not need to throw 
away anything? “Compressive sampling” aka “compressed 
sensing” shows that this is indeed possible.” 

The application of CS to imaging can be regarded as an 
evolution of MI, since the integral transformation that connects 
the data of interest i( ) to the really measured datagram I(x) is 
chosen so that the datagram itself is a sparse representation of 
i( ) and can be sampled more efficiently. Compressive imaging 
has been the first application as far investigated [4], while in 
the last years several studies have been undertaken that aims at 
investigating the application of CS to several fields of 
spectroscopy [5,6]. CS spectroscopy can be considered in its 
turn as an extension of earlier spectroscopic techniques, such as 
FTS or MDS, and some authors have claimed a possible 
radiometric advantage connected with the utilization of the CS 
approach [7]. 

However, recent theoretical investigations [8,9] addressing 
the radiometric performance of various multiplex spectroscopic 
techniques have shown evidence that signal multiplexing 
doesn’t provide any SNR benefit when the informative signal 
component is correctly individuated and taken into account. 
Even if CS technology does not offer any radiometric 
advantage, it gives a relevant improvement in terms of signal 
sampling, and remains one of most promising and 
unprecedented field of signal compression, justifying a 
thorough investigation of its true radiometric characteristics. 

III. MATHEMATICAL FRAMEWORK

The mathematical framework for representing the MI 
scheme is described in the following equations, which are 
conceptually the same involved in MS. Multiplex imagers 
produce in their focal plane an integral transform I(x) of the 
incoming intensity i( ), as shown in the next relationship: 

where F(x, ) is the integral kernel of the implemented 
(forward) transform, N(x) the noise due to the detector and 
readout circuitry, and x is the coordinate of the focal plane 
position (conjugate of the vector coordinate ) that is measured 
within a limited interval Dx. Depending upon the characteristics 
of the considered instrument,  and x can be scalar or vector 
coordinates while their physical interpretation can be spatial or 
spectral position. The source estimation is obtained performing 
the inverse integral transform, by means of the analysis kernel 
B(x, ). The symbol D  designates the observed measurement 
interval. In view of Eq. (1) we have: 

The previous equations should be intended as a 
mathematical framework for MS and MI that avoids the 
complexity arising from a detailed analysis of the optical 
characteristics of each specific implementation. The same 
modeling can be applied to the CS approach, which is based on 
a specific integral transformation having the same properties 
shown in Eqs. (1) and (2). Every implementation of multiplex 
imaging or spectroscopy adopts an orthogonal set of functions 
e(x, ), in order to obtain a practical definition of the two 
integral kernels F(x, ) and B(x, ) that must obey Eq. (2). 
Almost always the selected orthogonal functions are 
normalized and comply with general orthogonality 
relationships. The following equations give a general enough 
definition that can describe about each multiplex spectrometer 
or imager,  
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where F0 and B0 are real constants. Eqs from (1) to (3) 
make the measured light intensity distribution I(x) in the 
instrument’s focal plane far above the incoming intensity i( ), 
hence originating a radiometric gain in terms of the physical 
signal available for the detector I(x) >> i( ). Let us note that the 
amplitude boost allowed by multiplex techniques always 
involves the physical signal, i.e. the measured datagram. 

A. Compressive Sampling
Let us consider the general problem of reconstructing a

vector  i( )  from the datagram  I(x)  of the form: 
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where the subset of K adopted frequencies xk gives rise to 
compression being K<N. Here we have adopted a discrete 
representation of the signal, in order to highlight the number of 
samples. The same equations can also be written adopting a 
continuous model, where the number of samples N would then 
be selected according to the standard sampling theory. 

Definition 1 ([10]). We will say that a signal i( ) is S-
sparse if its support {t: i( t)  0} is of cardinality less or equal 
to S. 

Candès, Romberg and Tao [10] showed that one could 
almost always recover the signal i( ) exactly by solving the 
convex problem: 

1

01

~,1~min
N

t
ttkk iF

N
Ii xx (5) 

Theorem 1 ([10]). Assume that i( ) is S-sparse and that we 
are given K Fourier coefficients with frequencies selected 
uniformly at random. Suppose that the number of observations 
obeys 

NSCK log (6) 

Then minimizing || ( )|| reconstructs i( ) exactly with 
probability of success that exceeds 1-o(N- ), if the constant C in 
(6) is of the form (  + 1). The above theorem means that the
signal i( ) can be reconstructed by measuring just any set of K
frequency coefficients, utilizing an interpolation procedure
which minimizes a convex functional and does not require any
knowledge regarding the number of nonzero frequencies of
I(x). It is worth noting that, it is impossible to reconstruct S-
sparse signals with fewer samples and the same accuracy. It is
possible instead to establish simple connections with the
theorem of ideal sampling.

Suppose the signal i( ) has support  in the frequency 
domain, with B=μ( ), where μ(·) is the Lebesgue measure of 
the set . Whereas  is a connected set, we can think of B as 
the bandwidth of i( ) and apply Shannon’s theorem. Now 
suppose the set , still of size B, is unknown and not 
necessarily connected, a situation in which the Shannon 
sampling theorem doesn’t help. In this case, we can only 
assume that the connected frequency support is the entire 

domain, suggesting that all N samples are needed for exact 
reconstruction. However, Theorem 1 asserts that far fewer 
samples are necessary. Solving Eq. (5) will recover i( ) 
perfectly from about B log N samples in the transformed 
domain. The implicit assumption that the signal of interest i( ) 
is sparse would seem unrealistic, since all real signals are 
nonzero at almost all points . However, this apparent 
inconsistency is promptly overcome if one considers that the 
signal i( ) is only requested to admit a sparse representation in 
a generic and unknown transformed domain. This property 
limits the degrees of freedom to a value less than N, allowing in 
principle the application of the CS approach. 

Fig. 2: The typical multiplexing optical layout included in almost all CS 
instrument. A spatial light modulator performs the required integral transform  
and feeds the detector (after Gottesman and Fenimore [11]).

Fig. 2 shows the schematics of a multiplex imaging or 
spectroscopic instrument. The fundamental component is 
constituted by an optical subsystem which performs the desired 
integral transform, i.e. the digital cosine transform of a certain 
frequency chosen at random. We note that CS unavoidably 
entails signal multiplexing, as reported in Eqs. (4) and (5). 

IV. LIMITATIONS TO THE RADIOMETRIC BEHAVIOR OF 
MULTIPLEXED SIGNALS

We assume that the best radiometric performance attainable 
with a CS instrument that observes a given source i( ), is 
bounded by the performance reached by the same sensor 
observing the same source when the signal sampling is set 
according to Shannon theorem. Relying on the analysis of the 
previous Section, we can affirm that a CS instrument adopting 
the same sampling rate required by the ideal sampling theorem 
performs signal multiplexing without compression, falling thus 
in the class of MS or MI devices. This is certainly true for the 
CS examples in [5,6]. Therefore, the problem of assessing the 
best radiometric performance limit of CS technology can be 
turned into the more familiar problem of assessing the best 
performance achieved by a generic multiplex instrument. 
Recent theoretical investigations [24] have revealed that the 
signal measured in interferential multiplex spectroscopy (FTS) 
always contains a non-informative signal contribution holding 
most of the power conveyed by the transformed signal I(x). In 
a different wording, it has been shown that the radiometric 
advantage exists only for the physical, while the part of the 
measured signal I(x) that transmits source information usually 
has half of the amplitude of the original signal i( ). Moreover, 
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the high-amplitude physical signal originates a high power 
photonic noise that cannot be separated from the informative 
signal component, giving rise to a signal measurement of lower 
SNR. Evidence exists that this kind of drawback also affects 
MDS as well as MI [8,9]. We re-examine this aspect in the 
following Sect. IV.A, where we condense most of the results 
pointed out in [24]. 

A. Informative signal and effective SNR in multiplexed signals
The datagram I(x) is the integral transform of the source

i( ) obtained by means of a set of orthogonal functions e(x, ). 
These functions assume negative and positive values, while 
any source intensity must be definite positive. Moreover, most 
of the functions e(x, ) that can be used for MDS and MI cannot 
be optically coded as a transparency or reflectance mask as 
long as they assume negative values. Therefore, the function 
f(x, ) and the constant F0 are chosen so that the forward 
integral kernel F(x, ). can be optically coded (0  F(x, )  1).  

The supplementary function b(x, ) and the constant factor 
B0 guarantee that Eq. (2) holds true. Many implementations of 
MDS and MI adopt the following configuration [8]: 
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We note that any integral transforms defined by a set of 
auto-adjoint orthogonal functions e(x, ) must obey 
Plancherel’s theorem, as shown in the following equation [8]: 
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The result above implies that the amplitude boost provided 
by any multiplex approach, including also CS, is surprisingly 
connected with the offset term f(x, ) = ½ rather than with the 
integral transformation itself. The datagram can be written as: 

xx ifieFI 00 , (9) 

The first term on the right hand-side of Eq. (9) yields the 
integral transform originated by the orthogonal set of functions 
e(x, ) only, and the last term is a d.c. level proportional to the 
integrated source intensity. Therefore, the term f(x, ) doesn’t 
give contributions to the source estimates, and it doesn’t 
contain information pertaining to the source intensity 
distribution, that is, the multiplexed signal embedded in any 
MI, MS, and CS instrument is made up of two components I(x) 
= S(x) + U(x), the second of which doesn’t convey useful 
information. Barducci et al. [8] have shown that: 

xxx
SUI xxx 222 (10) 

The informative component S(x) of the measured datagram 
I(x) has half the amplitude of the source signal i( ) observed 
without multiplexing, hence we can write: 
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Where SNRM  represents the physical signal SNR of a MI or 
MS sensor , and SNRM-Eff represents its effective value which 
limits the accuracy of source estimations and includes the 
power of the informative datagram component only; n( ) is the 
inverse transform of the experimental noise N(x), and the two 
obtained expressions of the SNR in the two conjugated 
domains are equivalent due to Plancherel’s theorem. With 
simple mathematical manipulations one can write: 
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Here we have introduced the detector noise variance 2
Det, 

and the photonic noise variance |U(x)|, roughly corresponding 
to the intensity. We point out that the accuracy of source 
estimations in MI and MS always is worse than that obtained 
with a direct measurement model (traditional), and that the best 
reconstruction precision SNRCS-Eff  allowed by any CS sensor 
always is bounded by the value of Eq. (12). We recap this 
relevant outcome in the following relationship: 

xDet
EffMEffCS

U

i
SNRSNR

x2

2

4
1 (13) 

B. Discussion
We have found in Eqs. (12) and (13) the maximal SNR

allowed for a CS instrument, which is less than that achieved 
by an equivalent apparatus adopting a traditional (non-
multiplexing) measurement model SNRDir. This property is 
highlighted by the following relationship: 

xDet
DirEffMEffCS S

i
SNRSNRSNR

x42

2

(14) 

where the last inequality is a consequence of Eq. (10). The 
circumstance that instruments employing a direct measurement 
model with full sampling always achieve a better SNR than the 
equivalent CS multiplexing sensor, can also be explained as a 
consequence of the Data Processing Inequality (DPI) [12]. This 
aspect becomes more evident when we compare the two 
models of observation, as done in Fig. 3. The additional optical 
subsystem in the CS measurement model can be considered as 
a data-processing unit. The well-known DPI suggests that the 
source information flux reaching the detector should decrease 
due to this subsystem. Here, the principal characteristic to be 
considered is that within the detector integration time the 
telescope collects a finite number of photons subject to a 
natural statistical variability obeying Poisson’s statistics. In this 
condition the telescope itself and any subsequent element in 
Fig. 3 should be devised as communication channel operating 
on a continuous signal limited in power or amplitude, having a 
finite bandwidth (set by the signal sparsity) and SNR. Hence, 
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the finite channel capacity of each block decreases the 
transmitted information flux. The presence in the CS 
instrument of an additional block implies that information flux 
reaching the detector for this measurement model is less than 
or equal to the information flux available in the direct 
measurement model. This fundamental concept has been stated 
as Optical Data Processing Inequality in [9].  

Fig. 3: Comparison of the direct and CS (multiplex) measurement models. The 
differences between the two configurations are in the presence of a multiplex 
subsystem which perform an integral transform of its input signal, and in the 
circumstance that the detector samples the signal at a lower rate 

V. COMPRESSIVE SAMPLING FOR SPACEBORNE INSTRUMENTS

As noted before, CS doesn’t produce any radiometric or
SNR advantage. Therefore, we will consider the use of 
compressive sampling only in conjunction with possible 
sampling advantages (a reduced data volume for holding the 
same source information). 

When spaceborne imagers are considered, this novel 
technique can be useful for accommodating all sensor budgets 
to their minimal allowed value. As an example undersampling 
a sparse signal demands for Analogue-to-Digital Converters 
(ADCs) with lower sampling rate, a circumstance that is 
expected to mitigate the overall electrical power absorption of 
the instrument. Less samples per dataset even implies a lower 
capacity of the sensor electronic memory, a decrease of the 
requested computing power, and a reduced bandwidth for the 
satellite downlink., and finally into lower mass and volume 
reserved for the instrument, and reduced requirements for on-
board data processing. The most appealing situation in which 
CS can be applied is that of hyperspectral imagers operating at 
high spectral and spatial resolution, where the acquired datasets 
have three dimensions, resulting in extraordinary large volumes 
of collected data, which exhibits a significant correlation both 
in the spectral and the spatial directions. In summing up, the 
typical application of compressive sampling to the remote 
observation of the Earth and of other planets should be 
performed in the x -  or x - y domain, providing the relevant 
advantages listed before. This imply that cost, mass, and 
volume budgets might be reduced or optimized simply 
adopting the compressive sampling architecture for a standard 
spaceborne hyperspectral sensor.  It is worth noting that recent 
investigations [13] have pointed out that sparsity in the x -  
and x – y domains would roughly range in the interval from 3% 
until 10% of the original spectral samples. In the worst 

situation the number of needing samples necessary for error-
free signal reconstruction would not exceed 40% of the images 
of interest. In the assumption that this rule of thumb holds true, 
it is possible to obtain relevant savings induced by the 
examined method of undersampling a signal. 

VI. CONCLUSIONS

The above analysis of compressive sampling has 
highlighted some precious possible advantages of this 
technology, even if we have demonstrated that the maximal 
radiometric performance of the CS measurement model is 
always poorer than that obtainable in the traditional direct 
measurement approach. Existence of potential advantages of 
high value is the basic motivation for developing further 
additional research activities in this field. The main technical 
goals of supplementary investigations comprises the 
assessment of the sparsity S of typical x -  images, 
investigating the autocorrelation level of reflectance spectra of 
natural surfaces observed with spectral resolution varying from 
0.5 nm up to 30 nm, analyzing the effects of noise on CS, and 
the maximum interpolation error associated to assigned 
sparsity and sampling compression schemes, developing new 
programmable optical modulators able to reach higher frame-
rates that might be necessary for a full application of CS to 
hyperspectral imaging. 
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