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ABSTRACT   

The paper deals with an analytical study of the problem of pore detection and certification in bulk materials by means of 
X-ray radiography. The optimum thickness of a sample under X-ray absorption investigation of the pores is found, that
can be used for an improvement of the signal-to-noise ratio by the proper X-ray photon energy. In the case of low
absorption an X-ray coherent beam can be used for production of phase contrast in the radiographic experiments. We
present a simple model to calculate the complex value of the wave field formed by the sample. The model includes two
dimensionless parameters: the Fresnel number F= a2»(λz), where a is the pore radius, λ is the wavelength, z is the sample-
to-detector distance and the phase number Φ = akδ, where k = 2π»λ and δ is the decrement of the real part of material's
relative permittivity. The detailed analysis of the field structure is given with an estimation of the optimal position of the
detector. The numerical simulation results are presented as well, which were obtained for the Gaussian type of the pore
shape function. The stationary phase method of higher orders has been proven to simplify the Fresnel integral. The
developed qualitative visualization of the pores with the help of phase contrast X-ray imaging complements other
modern methods of monitoring porous-sensitive materials.
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1. INTRODUCTION

A presence of pores can change properties of the materials. The porosity effects can be natural or artificial, useful or 
harmful. Some studies and applications require an intensive saturation of the materials with the pores1. On the contrary, a 
production of laser ceramics needs a careful removal of the micropores2. A study of the pores is known to be both 
fundamental and practical .X-ray porosimetry as a part of general porosimetry3-5 is a fast developing technique based on 
X-ray small angle scattering6 and X-ray imaging7. At present it profits from current advances in X-ray source
development (new generation of synchrotron radiation and laboratory high brightness X-ray sources) as well as of the
state-of-the-art X-ray imaging methods, such as phase contrast tomography8 and ptychography9, 10. At the same time, the
image formation of the pores needs a more accurate and effective analytical description of the related phase contrast
effects.

The goal of this paper is to present two analytical approaches to X-ray imaging of the pores developed for the cases of 
absorption and phase contrast experiments. A simplified model of porous objects makes it possible to formulate and 
optimize more general conditions of the experimental layout including the X-ray source parameters, sample dimensions 
and measurement geometry. 

2. THE ABSORPTION CONTRAST

The main parameters and typical experimental layout are shown in Fig. 1. As an X-ray parallel beam running through the 
object under investigation, the measurement compares the number of photons going through the pore with then number 
of photons propagating through the bulk material without the pores. Considering the number of incident photons as a 
discrete random process one can write the signal-to-noise ratio SNR as: 

𝑆𝑁𝑅 =
|ேೌିே್|

ඥ{ேೌିே್}
(1) 

where Nb is the number of output photons passed through the bulk material with no pores, Na is the number of output 
photons that met a pore of the radius a and D is the variance. For Poisson photon statistics the variance of two quantities 
is known to equal the sum of the variances, with each of them being equal to its average. Then Eq. (1) takes the form 
(see Fig.1): 
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* 

𝑆𝑁𝑅 =
|ேೌିே್|

ඥ{ேೌିே್}
=

|ேೌିே್|

ඥேೌାே್
=  √𝑁𝑒ିఓ ഋೌିଵ

√ഋೌାଵ
(2) 

where N is the total number of photons incident on the pore cross section and μ is the linear attenuation coefficient of the 
material. Eq. (2) yields the following formula for the number of incident photons N: 

𝑁 = (𝑆𝑁𝑅)ଶ𝑒ఓ ഋೌାଵ

(ഋೌିଵ)మ (3) 

This expression can be used for choosing optimum values of the photon energy and the sample thickness.  By 
introducing x = ea and y =l/a we have: 

ே

(ௌேோ)మ = 𝑥௬ ௫ାଵ

(௫ିଵ)మ (4) 

The minimum of this value is reached at 

𝑥 =
ඥସ௬మିସ௬ାଽାଷ

ଶ(௬ିଵ)
(5) 

For sample thickness much larger than the pore size l >> a: 

𝑥 = 1 +
ଶ

௬
, 𝑦 ≫ 1 and, hence,  𝜇𝑙 = 𝑦 ∙ ln𝑥 ≈ 2 (6) 

i.e. for the pore imaging the optimum optical thickness of a sample is l  2. Substituting this value into (4) one can
obtain a simple formula for the total number of incident photons N required for the pore image production with given
SNR value:

𝑁 = (𝑆𝑁𝑅)ଶ మ

ଶ

మ

 మ
≈ 100

మ

మ (7) 

Here we use the practical value (𝑆𝑁𝑅)ଶ ≈ 30 (see Ref.7). 

Figure 1. Geometry and main parameters of X-ray pore imaging: l – sample thickness, a – pore radius, δ - decrement of the 
real part of material relative permittivity, s – source size, L – source to sample distance, z – sample to detector distance. 

As expected, the source flux needed for a clear pore imaging is proportional to the inverse square of the pore size. The 
flux can be decreased by an appropriate choice of the probing photon energy to reduce the sample thickness down to l  
2/ (see (6)). On the other hand, the smallest value of the thickness 𝑙 in (7) is limited by the mentioned condition 𝑙 >> 𝑎 
and restrictions of a sample manufacturing. In fact, formula (7) is an estimate of the number of photons per pixel in the 
assumption of pixel size being close to the pore radius a. The expression (7) multiplied by the total number of pixels 
gives us the total number of photons on the detector. 
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3. THE PORE X-RAY IMAGING AS A PHASE CONTRAST PROBLEM

For the sake of completeness and brevity we present only the main formulas of phase contrast imaging in application to a 
detection and measurement of the pores in almost transparent materials. The general theory and other applications of 
phase contrast X-ray imaging can be found in many papers and textbooks7, 11, 12. 

Let us consider the phase contrast imaging while neglecting the absorption. Then a ray passing through a pore in 
comparison with a neighboring ray outside the pore acquires the following phase difference (see Fig.1): 

𝑆(𝑥) =
0,    |𝑥| ≥ 𝑎,

−𝛿𝑘√𝑎ଶ − 𝑥ଶ,   |𝑥| ≤ 𝑎 ,
(8) 

where k is the wave vector, x is the impact parameter of the ray relative to the pore center,  is the decrement of the real 
part of material relative permittivity: 

𝜀 = 1 − 𝛿 + 𝑖𝛽, where 𝛿, 𝛽 ≪ 1 ;      𝜇 = 𝑘𝛽. (9) 

With using the phase difference S(x) one can write the wave field 𝑢(𝑥) right after the sample as: 

𝑢(𝑥) = 𝑒ௌ(௫). (10) 

In general, we will consider more common expression for the phase difference S(x) instead of (8): 

𝑆(𝑥) = −𝛿𝑘𝑎𝜑(𝜉), −∞ < 𝜉 < ∞, 𝜉 =
௫


 (11) 

where 𝜑(𝜉) is called the pore shape function and it is a smooth function of 𝜉 = 𝑥
𝑎⁄  at the interval  −∞ < 𝜉 < ∞ with

the maximum value  𝜑௫(𝜉) = 1 at  𝜉 = 0.  

Then, according to well-known Fresnel propagation theory the field 𝑢(𝑥, 𝑧) in the half space 𝑧 > 0 can be written as: 

𝑢(𝑥, 𝑧) = ට


ଶగ௭
∫ 𝑢(𝑠)

ஶ

ିஶ
𝑒

ೖ(ೞషೣ)మ

మ d𝑠 = ට


ଶగ௭
∫ exp ቄ𝑖

(௦ି௫)మ

ଶ௭
− 𝑖𝛿𝑘𝑎𝜑 ቀ

௦


ቁቅ  d𝑠

ஶ

ିஶ
 (12) 

or: 

𝑢(𝑥, 𝑧) = ට
ி


𝐽(𝐹, 𝛷, 𝜉),   𝐽(𝐹, 𝛷, 𝜉) = ∫ exp{𝑖𝐹 ∙ 𝜋(𝑡 − 𝜉)ଶ − 𝑖𝛷 ∙ 𝜑(𝑡)} d𝑡 ,

ஶ

ିஶ
𝜉 =

௫


 (13) 

where F is the Fresnel number and 𝛷 is the  phase number, which takes into account  the pore radius 𝑎 and the 
decrement of the real part of  relative permittivity 𝛿: 

𝐹 =
మ

ଶగ௭
=

మ

ఒ௭
 , 𝛷 = 𝛿𝑘𝑎 . (14) 

We suggest to express the space field coordinates 𝑥 and 𝑧 in (13) in the terms of dimensionless variables  = x/a and F = 
a2/(z) , where a is the pore radius and a2/ is the distance that is of the order of the Rayleigh length, and the phase 
number  which represents the parameters of the object. 

The question is: how the measurement of the field distribution (13) can be used for a detection of pore spaces inside 
nearly transparent samples? To address this question we study the properties of the Fresnel integral 𝐽(𝐹, 𝛷, ξ) and 
functions 𝐹 and Φ  in Appendix II. The corresponding asymptotic expansion of related fast oscillating integrals is 
considered in Appendix I. 

The Fresnel integral 𝐽(𝐹, Φ, 𝜉) carries the information about the pore spaces. It has two critical points: 𝑡ଵ = 𝜉 and 
𝑡ଶ = 0. This fact allows us to use the stationary phase method in the case of large values of 𝐹 and 𝛷 (see Appendix II for 
our analysis in the case of small values of Fresnel and phase numbers). It is based on application of the perturbation 
theory at large distance 𝑧 and/or small values of 𝛿. 

Usually microscopy and similar imaging techniques deal with 2D or 3D intensity distribution that is proportional to the 
square of field module |𝑢(𝑥, 𝑧)|ଶ. In this paper we expand the field amplitude 𝑢(𝑥, 𝑧) into the Taylor series or 
asymptotic series: (𝑥, 𝑧) = 𝑢()(𝑥, 𝑧) + 𝑢(ଵ)(𝑥, 𝑧) + ⋯ . Obviously, in the case of phase contrast imaging of the pores 
the module of the first term in the series is nearly equal to 1, that corresponds to the initial and/or non-perturbed field, 
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ห𝑢()(𝑥, 𝑧)ห
ଶ
= and  presents no useful information about the object strcuture. Therefore, to study of the pore space images

or diffraction patterns one should take into account next two or more terms of the expansion series, with the third and 
fourth derivatives of the phase 𝑆(𝑥) being used (see Appendixes I and II). The mentioned mathematical expressions are 
utilized in Section 4 for analysis of the output field u(x, z) formed by the sample. 

4. DEPENDENCE OF SCATTERED FIELD STRUCTURE 𝒖(𝒙, 𝒛) ON THE FRESNEL
AND PHASE NUMBERS F AND 𝜱

For a transparent material our concept of pore study can be summarized as follows (see also (8) - (13) and Section 3). 
The primary source of the information is the intensity measurement of the field in a plane after the sample (see Fig 1). 
So, the plane Pa can be located right after the sample, where the field is not affected strongly by further diffraction in free 
space. In this case the object structure visualization can be performed only by the absorption contrast, since a change of 
the diffraction pattern inside the boundaries of the sample volume may be neglected. It should be mentioned that the field 
intensity distribution on the Pa plane can be magnified using an optical system. 

As the detector moves away from Pa plane to far Pp plane, the inline phase contrast enhances and forms a clear 
diffraction pattern. In this case a processing of such experimental can be carried out with the help of either analytical or 
numerical simulation of the wave propagation from the source through the sample and then in free space from the plane 
Pa to the detector plane Pp 13, 14. 

In this paper we show that it is possible to calculate the amplitude and phase distributions of the field in both planes Pa 
and Pp from the intensity measured on the plane Pp with using iterative computer procedures. Obviously, our method of 
coherent imaging is based on the phase retrieval algorithms and principles of in-line holography, coherent diffraction 
imaging and ptychography7, 9, 15. Our previous publication16 presents general discussion on the choice of practical 
geometry and computer domains. In this paper we will apply the developed theoretical approaches to X-ray imaging of 
the internal structure of a porous material. 

Returning to a qualitative analytical study of the field u (x, z) given by equations (12), (13) we have to mark its 
properties: (a) |𝑢(𝑥, 𝑧 → 0)|ଶ = 1 for a short distance that is much smaller than the Rayleigh length a2/ and (b) 
𝑢(𝑥, 𝑧 → ∞) = 1 for a long distance that is much larger than that length. Following Subsections 4.1 – 4.4 present the 
corresponding approximate expressions for the fields 𝑢(𝑥, 𝑧) obtained in the cases of large and small values of Fresnel 
and phase numbers 𝐹 and 𝛷. 

4.1 Large Fresnel number F 

In this case the critical point 𝑡ଵ = 𝜉 = 𝑥
𝑎⁄  coincides with lateral coordinate that allows us to determine the function

𝜑(𝜉) of the shape of the pore space interface. The wave field can be derived by substituting ℐ(𝐹, Φ, ξ) from (A13) into 
(13): 

𝑢(𝑥, 𝑧) = 𝑒ିఝ(క) ቄ1 +
ఋ௭

ଶ
ൣ𝜑′ᇱ(𝜉) − 𝑖Φ𝜑ᇱଶ(𝜉)൧ቅ (15) 

|𝑢(𝑥, 𝑧)|ଶ = 1 + 𝛿
௭


𝜑ᇱᇱ(𝜉) +

ఋమ

ସ

௭మ

మ
{[𝜑ᇱᇱ(𝜉)]ଶ + Φଶ[𝜑ᇱ(𝜉)]ସ} , 𝜉 = 𝑥

𝑎⁄  . (16) 

One can see that the x dependence of the intensity is given by the first and second derivatives of the pore shape function 
𝜑(𝜉). They both would contribute to an edge enhanced image of the pores8 described by formula (16). If we discard the 
third term, we see the intensity distribution at a certain distance from the sample reproduces the second derivative of the 
field phase on the back plane of the sample. The first two terms in (16) correspond to the results of  Ref.17 devoted to 
phase contrast imaging of thin objects but in our work we applied the stationary phase method to not the wave field but 
the measured intensity directly. Unlike the results of Ref.17 formulas (15), (16) contain 𝛷 and 𝜑ᇱ and offer better 
characterization of the object. In addition, these formulas can be used to find the derivatives of the pores shape function 
and phase number 𝛷 (and, hence, the pore radius 𝑎 (see (14)) from the measurement of the field behind the sample. 

4.2 Small Fresnel number F 

This is the case of long distance z ≫ a2/λ. Large z and low refraction δ are physically alike, since both variables result in 
the same weak perturbation of the initial plane wave field u(x,z) = 1. So, one may write down: 

𝐽(𝐹 → 0, Φ, 𝜉)  𝐽(𝐹, Φ → 0, 𝜉). (17) 
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This case is considered in more details in Appendix II. Using the expression (A16) for 𝐽(𝐹, Φ, 𝜉) in (13) gives: 

𝑢(𝑥, 𝑧) = 1 − ට
ி


𝐽(𝛷) − 𝑒

ഏ

ర𝐹
య

మ {𝐽ଶ(𝛷) − 2𝜉𝐽ଵ(𝛷) + 𝜉ଶ𝐽(𝛷)} + ⋯ , 𝜉 =
௫


, 𝐹 ≪ 1 (18) 

|𝑢(𝑥, 𝑧)|ଶ = 1 − ට
ଶమ

ఒ௭
 ∫ d𝑡 ∙ (sin[𝛿𝑘𝑎𝜑(𝑡)] + 1 −  cos[𝛿𝑘𝑎𝜑(𝑡)]) + ⋯ ,

ஶ

ିஶ
. (19) 

where 𝐽(𝛷), 𝐽ଵ(𝛷) and 𝐽ଶ(𝛷) are defined in (A17). 

4.3 Large phase number 𝜱 

Here the phase difference acquired due to a pore space is large. Of course, that is the case of large radius 𝑎 and relatively 
soft X-rays because of the value of 𝛿 scales as 𝜆ଶ. Then, as mentioned in Section 3, the second critical point 𝑡 = 0 of the 
integral (13) plays its role (see Appendix II). By substituting (A21), (A22) into (13) we obtain: 

𝑢(𝑥, 𝑧) = exp{𝑖𝐹𝜋𝜉ଶ − 𝑖𝛷} ∙ ට


ఋ (ିఝᇲᇲ)௭
ቂ1 +

(௫)

ః
ቃ , 𝜉 =

௫


, 𝛷 ≫ 1 (20) 

|𝑢(𝑥, 𝑧)|ଶ =  


ఋ (ିఝᇱᇱ)௭
ቂ1 −



ఋ (ିఝᇱᇱ)௭
ቃ (21) 

where 𝐶(𝑥) is defined by (A22) and (−𝜑′′) is taken at 𝜉 = 0, that characterizes the pore interface inside the pore space. 
From (19) and (20) one can see that large phase difference 𝑆(𝑥) acquired due to either large pore radius 𝑎 or large 
material permittivity decrement 𝛿 leads to a strong distortion of the initial field 𝑢(𝑥, 𝑧). However, this effect disappears 
at a large distance from the sample. It should be mentioned that this conclusion is in agreement with electrodynamics and 
mathematical properties of fast oscillating integrals. 

4.4. Small phase number 𝜱 

By using formula (A23) of Appendix II and referring to the initial expressions (12), (13) we can obtain: 

𝑢(𝑥, 𝑧) = 1 − 𝛷√𝑖𝐹 ∫ d𝑡
ஶ

ିஶ
𝜑(𝑡)exp ൜𝑖𝐹 ∙ 𝜋 ቀ𝑡 −

௫


ቁ

ଶ

ൠ = 

= 1 − 𝑖𝛷 ቈට
ி


∫ d𝑡

ஶ

ିஶ
𝜑(𝑡)exp ൜𝑖𝐹 ∙ 𝜋 ቀ𝑡 −

௫


ቁ

ଶ

ൠ,  𝛷 ≪ 1. (22) 

The term in brackets is the Fresnel integral applied directly to the pore shape function 𝜑(𝑡) similar to the field amplitude 
in the case of absorption contrast. This means that in the case of weak refraction the phase contrast can be regarded as an 
absorption contrast. Finally, to complete this section we give an expression for the field module: 

|𝑢(𝑥, 𝑧)|ଶ = 1 − 4𝜋𝛿


ఒ
ට

మ

௭ఒ
∫ d𝑡

ஶ

ିஶ
𝜑(𝑡)𝑐𝑜𝑠 ൜𝜋

మ

௭ఒ
ቀ𝑡 −

௫


ቁ

ଶ

+
గ

ସ
ൠ. (23) 

It is easy to verify that this expression at large distance z coincides with (19) for small δ and yields: 

|𝑢(𝑥, 𝑧)|ଶ = 1 − 2𝜋√2 𝛿


ఒ
ට

మ

௭ఒ
∫ d𝑡

ஶ

ିஶ
𝜑(𝑡). (24) 

5. DISCUSSION

Many modern methods of studying the internal structure of an object imply two approaches. At the first the probing 
beam is propagated through a sample containing features like grains, voids, cracks etc. The result is a modified field 
distribution on the back side of the sample. It can be recorded and processed “as it is”, if a detector with high spatial 
resolution is available. In the simplest form – standard X-ray radiography - this approach has been used in Section 2 to 
estimate the optimum thickness and the photon number per pixel required for successful pore detection. If the spatial 
resolution defined by the detector used is not sufficient, X-ray microscope optics* or coherent lensless X-ray imaging is 

* Obviously, in order to restore the pore shape in this case an advanced computer microscopy19 is required to process the optical field
patterns.
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used7. Coherent X-ray/EUV imaging is known to consist in recording the diffraction patterns at a definite distance and 
using the reconstruction algorithms data to restore the field module and phase on the back side of the sample7, 9.  

For X-ray studies of low absorption materials the results of Section 2 cannot be directly used, and phase contrast imaging 
has no alternative. Therefore, in Section 3 we reduced the pore imaging problem to investigation of a kind of the Fresnel 
integral (13) for the field in any plane located in the half space behind the sample. The Fresnel integral 𝐽(𝐹, 𝛷, 𝜉) has 
been shown to depend on three dimensionless parameters: 𝐹, 𝛷 and the pores shape function 𝜑(𝜉). 

We developed a set of computer codes** to calculate 𝐽(𝐹, 𝛷, 𝜉) and the amplitude and phase field distributions for a wide 
range of the input parameters and various types of function 𝜑(𝜉). In addition, in Section 3 in order to provide a physical 
understanding of the discussed problems in X-ray investigation of low absorption materials we have presented an 
analysis of the wave field produced by a coherently illuminated sample containing pore spaces. The obtained formulas 
(15) – (24) can be of use in choosing detector position and region domains for the computer simulation.

Consider, for example, the optimal position of the detector 𝑧௧ for a phase contrast based pore observation with using of 
formulas (16) and (24), while the field intensity is recorded at small and large distances. It is obvious that due to low 
absorption contrast the initial intensity near the sample (small z) is slightly disturbed. On the other hand, at far distances 
(large z) the intensity of the initial reference wave, i.e. plane wave, would be dominant, as a field perturbation induced by 
the object is attenuated. Therefore, there is a location of the detector to observe the maximum phase contrast pattern. To 
find this location on the optical axis one should equate the formulas (16) and (24) at 𝑥 ≈ 0. Then we have: 

𝐹௧ ≡
మ

ఒ௭
=

ଵ

ଶ


ିఝᇱᇱ()

గ ∫ ୢ௧
ಮ

షಮ ఝ(௧)
൨

ଶ
ଷൗ

. (25) 

Figure 2. The contrast value 1 − |u(x, z)|ଶ observed on the optical axis 𝑥 = 0 by a single pore embedded in a low absorption 

material as a function of the Fresnel and phase numbers  𝐹 (𝐹ିଵ =
ఒ௭

మ
) and  = 2π𝛿



ఒ
. (see Fig.1).The Fresnel integral 

𝐽(𝐹, 𝛷, 𝜉) was calculated following (13) with the Gaussian pore shape function 𝜑(𝜉). 

Fig.2 shows that the optimum detector position 𝑧௧ corresponds to the Fresnel number 𝐹௧~1 with a weak dependence 
on the decrement 𝛿. The term in brackets demonstrates also a weak dependence on the pore shape function 𝜑(𝑡). Then, 
according to (16) the maximum contrast value with respect to the reference wave intensity can be written as: 

** These codes are available also at on-line web form18. 
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1 − ห𝑢൫𝑥, 𝑧௧൯ห
ଶ

=  𝛿
௭


[−𝜑′′(0)]. (26) 

that is proportional to the decrement 𝛿. 

Fig. 2 demonstrates the 𝑧 dependence of the contrast ratio 
ଵି|௨(௫,௭)|మ

|௨(௫,௭ୀ)|మ = 1 − |𝑢(𝑥, 𝑧)|ଶ on the optical axis 𝑥 = 0 

calculated for various values of the phase number 𝛷. The results were obtained with the help of direct computation of the 
integral 𝐽(𝐹, Φ, ξ) (13) with the Gaussian shape function 𝜑(𝜉) = 𝑒ିకమ

. 

6. NUMERICAL SIMULATION OF PORE PTYCHOGRAPHY EXPERIMENTS

As an example, we present an application of ptychographic technique for numerical simulation of the complex wave 
field after its propagation though ceramic material containing the pores. The ceramics is modelled by Y3Al5O12 glass 
sample containing hundreds of the pores with their random radius in the range from 0.5 to 0.75 µ and random location 
inside volume of interest (- 4; 4)  (- 4; 4) µm2. We use the probing X-ray wavelength 𝜆 = 0.124 nm, with the refractive 
index of the modelled glass being n = 1 - 8.83·10-6 + i·1.67·10-7. The pore spaces are assumed to be filled by the air with 
no  1. A square 385385 detector with the pixel size of 50 µm is located at the distance of 2 meter from the object. 
Then, according to Ref.16 the object domain size is 5x5 µm2 with the spatial resolution 13 nm. The X-ray source is set to 
be a point source collimated by a circular aperture of diameter 5 μm near the object. During the ptychography scan the 
object moves along the spiral trajectory. Thus, the total field of view turns out to be a circle of diameter about 19 μm 
(Fig.3). The results of the simulation are presented in Fig.4 that shows the real (left) and imaginary (right) parts of the 
restored field directly after the object. All pores are clearly distinguishable, and the best image quality is observed on the 
regions of pores overlapping. 

Figure 3. Total field of view composed of 128 circles 5 μm in diameter on  a spiral trajectory. 

A similar numerical experiment with a single pore determines the minimum detectable pore diameter as a0 = 4.8 μm. To 
find the related minimum detectable concentration of the pores with a typical radius of 0.5 μm we carried out additional 
simulations with the same geometric parameters and 10 random sampling of the pores. The result obtained is 55 pores 
inside 8x8 µm2 area or 0.86 µm-2. Given the ceramic sample is of 1-cm thickness, the minimum detectable concentration 
of the pores is found to be (0.86*108)/1 = 0.86*108 cm-3.  

7. SUMMARY

1. We demonstrated that there is the optimal sample thickness maximizing the signal-to-noise ratio in pore observation
experiments based on X-ray absorption contrast.

2. We introduced a model for characterization of pores in transparent materials in coherent X-ray radiography data. The
model allows us to determine the pore size 𝑎 and its shape function 𝜑(𝜉).
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Figure 4. Simulated real (left) and imaginary (right) parts of restored wave field created by Y3Al5O12 sample containing 100 
pores. 

3. The structure of the field after propagation through a sample containing the pores is expressed by the Fresnel integral
similar to that of in-line holography. The suggested model depends on two dimensionless parameters: the Fresnel
number 𝐹 =  𝑎ଶ𝜆𝑧 and the phase number 𝛷 =  𝑎𝑘𝛿. A measurement of the field intensity with a proper position of the
detector makes it possible to determine the pore size 𝑎 and its shape function 𝜑 (𝜉).

4. We have determined four spatial and frequency domains for significant simplification of the Fresnel integral. They
correspond to four values of the mentioned parameters:  𝐹 ≫ 1, 𝐹 ≪ 1, 𝛷 ≫ 1 and 𝛷 ≪ 1.

5. The analysis of these four cases points out to the optimal position of the detector to achieve the best contrast in X-ray
study of the pores (formulas (25) and (26)).

6. In the case of a Gaussian function 𝜑 (𝜉) we have carried out a series of numerical simulation of the X-ray imaging
experiments. The software developed for calculating of the coherent fields in X-ray studies of objects with an arbitrary
pore function is available in the public domain.

The authors are grateful to Dr.E.A. Cheshev and Dt.I.M.Tupitsyn for useful and stimulating discussions. This work was 
supported in part by the Russian Foundation of Basic Research projects 19-02-00394, 18-08-01066 and 18-29-17039.  
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APPENDIX I. ASYMPTOTIC EXPANSION OF ONE TYPE OF FAST OSCILLATING 
INTEGRAL 

Let us consider the integral 

𝐽(𝐹) = ∫ exp{𝑖𝐹 ∙ 𝑓(𝑡) − 𝑖𝜓(𝑡)} d𝑡 
ஶ

ିஶ
(A1) 

in the case of large F, with 𝑡 being critical point, i.e.  
ௗ(௧)

ௗ௧
= 0 at  𝑡 = 𝑡 and 

𝑓(𝑡) = 𝑓 +
ᇱᇱ

ଶ
(𝑡 − 𝑡)ଶ +

ᇱᇱᇱ


(𝑡 − 𝑡)ଷ +

ᇱᇱᇱᇱ

ଶସ
(𝑡 − 𝑡)ସ + ⋯ , 𝑓ᇱ = 0, 𝑓′′ > 0 (A2) 

𝜓(𝑡) = 𝜓 + 𝜓′(𝑡 − 𝑡) +
టᇱ

ଶ
(𝑡 − 𝑡)ଶ + ⋯ (A3) 

where  𝑓, 𝑓′ …    and   𝜓, 𝜓′ …  are the values of functions 𝑓(𝑡)  and 𝜓(𝑡) and their derivatives at 𝑡 = 𝑡. The solution of 
the problem described by (A1) – (A3) is used in Section 3 and Appendix II to evaluate the pore imaging integral 
𝐽(𝐹, Φ, 𝜉) (13) in the case of large Fresnel and phase numbers. 

The integral (A1) belongs to a class of fast oscillating integrals well-known in mathematical literature. If functions 𝑓(𝑡) 
and 𝜓(𝑡) have no singularities, (A1) can be simplified by using the first term of its asymptotic expansion into power 
series of inverse √𝐹. This is the stationary phase method which is described in textbooks20-22.  However, if functions 

𝑓(𝑡) and 𝜓(𝑡) have any singularities one needs considering higher powers of 𝐹ିଵ
ଶൗ , as, for example, in the case of the 

presented paper. The related solution can be found in special mathematical literature23, 24. Since we often use the 
asymptotic expansion of the integral (A1), we would like to present a brief discussion of the expressions obtained for the 
first few terms of this expansion. 

By substituting  𝑦 = √𝐹(𝑡 − 𝑡) into (A1) and expanding the exponent into series of 𝐹ିଵ
ଶൗ  we can write:

𝐹 ∙ 𝑓(𝑡) − 𝜓(𝑡) = 𝐹𝑓 − 𝜓 +
ᇲᇲ

ଶ
𝑦ଶ +

(௬)

√ி
+

(௬)

ி
+ ⋯ ,   𝑡 → 𝑡 (A4) 
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𝐴(𝑦) =
ᇱᇱᇱ


𝑦ଷ − 𝜓′𝑦,    𝐵(𝑦) =

ᇱᇱᇱ

ଶସ
𝑦ସ −

టᇲᇲ

ଶ
𝑦ଶ, 𝑦 = √𝐹(𝑡 − 𝑡). (A5) 

Using (A4), (A5) in (A1) enables us to expand the integrand also into a series of 𝐹ିଵ
ଶൗ  and to reduce the initial integral 

to the following form: 

𝐽(𝐹) =
ୣ୶୮(ி∙ି )

√ி
∫ ቄ1 +



√ி
𝐴(𝑦) +



ி
ቂ𝐵(𝑦) +



ଶ
𝐴ଶ(𝑦)ቃ + ⋯ ቅ exp ቄ𝑖 ∙

ᇲᇲ

ଶ
𝑦ଶቅ d𝑦 

ஶ

ିஶ
(A6) 

where the first term corresponds to the stationary phase approximation20. In contrast to Ref.20 formula (A6) includes also 

the terms of the order 𝐹ିଵ
ଶൗ  and 𝐹ିଵ that are responsible for the phase contrast needed for the X-ray pore investigation. 

To find the corresponding coefficients we can reduce the integrals in (A6) to Gaussian quadratures and their 
derivatives25: 

𝐼(𝛼 + 𝑖𝜂, 𝛽) = ∫ exp[𝑖(𝛼𝑦ଶ + 2𝛽𝑦) − 𝜂𝑦ଶ]
ஶ

ିஶ
 d𝑦 = ට

గ

ఈ
exp ቀ−𝑖

ఉమ

ఈ
ቁ , 𝛼 > 0, 𝜂 → +0 (A7) 

with: 

∫ exp[𝑖𝛼𝑦ଶ]
ஶ

ିஶ
𝑦ଶd𝑦 =



ଶఈ
ට

గ

ఈ
, ∫ 𝑒𝑥𝑝[𝑖𝛼𝑦ଶ]

ஶ

ିஶ
𝑦ସd𝑦 = −

ଷ

ସఈమ
ට

గ

ఈ
, 

∫ exp[𝑖𝛼𝑦ଶ]
ஶ

ିஶ
𝑦d𝑦 = −

ଵହ

଼ఈయ
ට

గ

ఈ
. (A8) 

Now one can see that formula (A6) with 𝐴(𝑦) and 𝐵(𝑦) defined in (A4) and (A5) after the integration over y provides 
the desired approximation of (A1) in the case of large Fresnel numbers* 

𝐽(𝐹) = ∫ exp{𝑖𝐹 ∙ 𝑓(𝑡) − 𝑖𝜓(𝑡)} d𝑡 
ஶ

ିஶ
=

௫(ி∙ିట)

√ி
ට

ଶ

ᇱᇱ
ቀ1 +



ி
ቁ , 𝐹 ≫ 1 (A9) 

where 

𝐶(𝑡) =
ହ൫ᇲᇲᇲ൯

మ

ଶସ(ᇲᇲ)య −
ଷ

(ᇲᇲ)మ ቀ
ᇲᇲᇲᇲ

ଶସ
+

ᇲᇲᇲటᇲ


ቁ +

టᇲᇲି(టᇱ)మ

ଶᇱᇱ
(A10) 

Note that in (A4) and (A5) 𝑓, 𝑓′ …  and  𝜓, 𝜓′ … are the functions 𝑓(𝑡)  and 𝜓(𝑡) and their derivatives at 𝑡 = 𝑡. 

APPENDIX II. THE PROPERTIES OF THE FRESNEL INTEGRAL 𝑱(𝑭, 𝜱, 𝝃) 

The results of Appendix I allow us to investigate the Fresnel integral 𝐽(𝐹, Φ, ξ) in the cases of  large and small values of 
the Fresnel and phase numbers in application of our problem of X-ray pore studies. 

(a) Large Fresnel number

We use formulas (A9), (A10) to simplify the integral 𝐽(𝐹, 𝛷, 𝜉) of the pore imaging (see Sec. 2, formula (13)) as: 

𝑓(𝑡) = 𝜋(𝑡 − 𝜉)ଶ, 𝑡 = 𝜉,   𝑓ᇱᇱ = 2𝜋, 𝑓ᇱᇱᇱ = 0, 𝑓ᇱᇱᇱᇱ = 0 (A11) 

𝜓(𝑡) = 𝛷𝜑(𝑡), 𝜓 = 𝛷𝜑,  𝜓ᇱ = 𝛷𝜑ᇱ, 𝜓ᇱᇱ = 𝛷𝜑′ᇱ (A12) 

and to get the following expression: 

𝐽(𝐹, 𝛷, 𝜉)  =
√௫(ିఃఝ)

√ி
ቂ1 +

ః

ସగி
൫𝜑′ᇱ − 𝑖𝛷𝜑ᇱଶ

൯ቃ ,   𝐹 ≫ 1 (A13) 

where 𝐹 and 𝛷 are the Fresnel and phase numbers,  𝜑, 𝜑ᇱ and 𝜑′ᇱ are the pore shape function and its derivatives taken at 
𝑡 = 𝜉 =

௫


,  𝑥 is the lateral coordinate and 𝑎 is the pore radius. 

* Note that there are only terms containing even powers of y in the integrand.
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(b) Small Fresnel number

This is the case of large distance 𝑧 that corresponds to the first order perturbation theory, i.e. a pore induces the field 
fluctuation against the background of primary plane wave. The value of the phase number 𝛷 is not relevant. Therefore, 
in this case one can expect 𝑢(𝑥, 𝑧) = 1 in (13) and, hence:  

𝐽(𝐹 → 0, 𝛷, 𝜉) ≈ ට


ி
 (A14) 

To investigate the field 𝑢(𝑥, 𝑧) at small numbers 𝐹 with a higher accuracy it is convenient to rewrite the Fresnel integral 
𝐽(𝐹, 𝛷, 𝜉) (13) in the form: 

𝐽(𝐹, 𝛷, 𝜉) = ට


ி
− ∫ d𝑡 [exp{𝑖𝐹 ∙ 𝜋(𝑡 − 𝜉)ଶ}] ൣ1 − 𝑒ି ఃఝ(௧)൧

ஶ

ିஶ
(A15) 

If the function 𝜑(𝑡) decreases fast enough for |𝑡| > 𝑎 , the first multiplier of the integrand in (A15) can be expanded in 
the power series of F. Then: 

𝐽(𝐹, 𝛷, 𝜉) = ට


ி
− 𝐽(𝛷) − 𝑖𝐹𝜋{𝐽ଶ(𝛷) − 2𝜉𝐽ଵ(𝛷) + 𝜉ଶ𝐽(𝛷)} (A16) 

where: 

𝐽(𝛷) = ∫ d𝑡  ൣ1 − 𝑒ିః (௧)൧,
ஶ

ିஶ
𝐽ଵ(𝛷) = ∫ 𝑡d𝑡ൣ1 − 𝑒ିఃఝ(௧)൧,

ஶ

ିஶ
 

𝐽ଶ(𝛷) = ∫ 𝑡ଶd𝑡ൣ1 − 𝑒ିఃఝ(௧)൧.
ஶ

ିஶ
 (A17) 

Formulas (A16), (A17) together with (13) can be used to evaluate the field 𝑢(𝑥, 𝑧) for small Fresnel numbers F within 
the accuracy of the second order perturbation theory. 

(c) Large phase number

To estimate the Fresnel integral (13) we refer again to Appendix I, with taking into account the second critical point 
𝑡ଶ = 0 of 𝐽(𝐹, 𝛷, 𝜉) (13) and large number 𝛷. This results in the following substitution for 𝐽(𝐹) in formula (A1): 

𝐹 = 𝛷, 𝑓(𝑡) = −𝜑(𝑡), 𝑡 = 0, 𝜓(𝑡) = −𝐹𝜋(𝑡 − 𝜉)ଶ (A18) 

Then we can write: 

𝐹 = 𝛷, 𝑓 = −1, 𝑓′′ = −𝜑′′(0) > 0, 𝑓ᇱᇱᇱ = 0, 𝑓ᇱᇱᇱᇱ = −𝜑 ᇱᇱᇱᇱ(0), (A19) 

𝜓 = −𝐹𝜋𝜉ଶ, 𝜓ᇱ =  2𝐹𝜋𝜉, 𝜓ᇱᇱ = −2𝐹𝜋, (A20) 

into (A9), (A10) and after simple manipulations we obtain the desired formula for the Fresnel integral: 

𝐽(𝐹, 𝛷, 𝜉) = ට



exp{𝑖𝐹𝜋𝜉ଶ − 𝑖𝛷} ∙ ට

ଶగ

ିఝᇲᇲ ቂ1 +
(௫)

ః
ቃ , 𝜉 =

௫


, 𝛷 ≫ 1 (A21) 

𝐶(𝑥) =
ଵ

ିఝᇱᇱ
ቂ

ఝ ᇲᇲᇲᇲ

଼(ିఝᇱᇱ)
− 𝐹𝜋(1 + 𝑖2𝐹𝜋𝜉ଶ)ቃ (A22) 

Note that according (A18) - (A20) the function 𝜑(𝑡) and its derivatives are taken at the critical point 𝑡 = 0 of the 
integral (A1). 

(d) Small phase number

In this case the form (A15) of the Fresnel integral is more appropriate than (13). Expanding it into a series by 𝛷 and 
using the first two terms we can write: 

𝐽(𝐹, 𝛷, 𝜉) = ට


ி
− 𝑖𝛷 ∫ 𝜑(𝑡)𝑑𝑡 exp{𝑖𝐹 ∙ 𝜋(𝑡 − 𝜉)ଶ}, 𝜉 =

௫


 .

ஶ

ିஶ
 (A23) 

Formula (A23) demonstrates the evident fact: the Fresnel transform of a phase signal exp{𝑖𝜑(𝑡)} can be reduced to the 
Fresnel transform of its phase 𝜑(𝑡). 
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