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ABSTRACT

Liver vessel segmentation is important in diagnosing and treating liver diseases. lodine-based contrast agents
are typically used to improve liver vessel segmentation by enhancing vascular structure contrast. However,
conventional computed tomography (CT) is still limited with low contrast due to energy-integrating detectors.
Photon counting detector-based computed tomography (PCD-CT) shows the high vascular structure contrast in
CT images using multi-energy information, thereby allowing accurate liver vessel segmentation. In this paper,
we propose a deep learning-based liver vessel segmentation method which takes advantages of the multi-energy
information from PCD-CT. We develop a 3D UNet to segment vascular structures within the liver from 4 multi-
energy bin images which separates iodine contrast agents. The experimental results on simulated abdominal
phantom dataset demonstrated that our proposed method for the PCD-CT outperformed the standard deep
learning segmentation method with conventional CT in terms of dice overlap score and 3D vascular structure
visualization.
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1. INTRODUCTION

Vascular structures segmentation within the liver plays an important role in diagnosing and treating the patient’s
liver condition. For example, if there is a tumor in the patient’s liver, determining the location of the tumor
and the distribution of vascular structures in the liver before making liver resection will help planning for liver
surgery.l'? In particular, visualizing blood vessels in three dimensions before radio frequency ablation treatments
or minimally invasive surgery can provide a road map for analyzing the location of blood vessels related to lesions.?
In addition, in the case of liver transplantation, the vascular structure of the liver donor can be identified in
advance, helping to accurately verify whether it is suitable for liver donors.? 4

As such, the segmentation of the vascular structure in the liver is critical for the diagnosis and treatment
of liver diseases. Liver vessel segmentation is challenging due to the anatomical variability of the structure
of the liver and blood vessels. To facilitate the liver vessel segmentation, iodine-based contrast agents are
usually injected into the patient to highlight the vascular structures in the liver. However, the contrast of the
iodine-enhanced vessels to the surrounding tissue is limited in the conventional computed tomography (CT)
with energy-integrating detectors.® Even though there are promising CT organ segmentation results using deep
learning methods such as UNET, %8 it still remains challenging for deep learning methods to segment the liver
vascular structures in the conventional CT images due to low contrast.
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Meanwhile, photon counting detector-based computed tomography (PCD-CT) is an emerging medical imaging
technology, which has potential advantages over conventional CT. Especially, PCD-CT has the ability to enhance
the contrast to noise ratio with iodine contrast agents, generate multi-energy images simultaneously, reduce the
noise and increase the spatial resolution.” The degree of attenuation for each material by X-ray depends on the
energy and properties of the material.'® In particular, when the iodine is injected, the attenuation in the vessels
increase, resulting in an energy-dependent difference in attenuation between the iodine-enhanced vessels and
surrounding tissue in the liver. Thus, we hypothesize that the energy discrimination capability of the PCD-CT
has benefit for the blood vessel segmentation compared to the conventional CT.

In this paper, we propose a 3D UNET for liver vessel segmentation in PCD-CT, which trains bin-wise images
at once in a deep convolutional neural network with a single labeled image. We compare our proposed method
with the same UNET structure trained by a conventional CT image (except the multi-channel input for the
proposed one). Datasets are generated with abdominal simulation phantom with iodine-enhanced for the liver
blood vessels. We apply a low concentration level of iodine, reducing the risk of contrast-induced nephropathy
into a liver and vessel, with a relatively low level of iodine diffused in the liver.!! The experimental results using
the PCD-CT dataset are compared and analyzed with those using the conventional CT dataset through dice
score and 3D vascular structure visualizations.

The paper is organized by the following. In Section 2, we describe the PCD-CT measurement models, and
UNET architecture for liver vessel segmentation. Section 3 presents the experimental setup and the quan-
titative/qualitative assessment for liver vessel segmentation results with conventional CT and PCD-CT. The
conclusion and discussion are provided in Section 4.

2. METHODS

Fig. 1 describes the overview of our liver vessel segmentation method using the PCD-CT. We first add the iodine
on ground-truth 3D CT and generate 4-bin images based on the PCD-CT measurement model. We train the
UNET from 3D random patches from 4-bin images and compare the liver vessel segmentation performance with
the UNET trained on the corresponding conventional CT dataset.

2.1 PCD-CT measurement model

We assume that the bin-wise photon counts are independent Poisson random variables, and the expected counts
gy for the b-th energy bin of PCD-CT is given by

g — / I(E)Sy(E)e | B g5, (1)
0
forb=1,2--- B,

where I(E) represents the X-ray incident spectrum, and Sy,(E), which includes the spectral distortion in PCD,
is a bin sensitivity function. [ u(r, E)dr is the line integral of the linear attenuation coefficient.

An experiment was conducted using a conventional CT dataset as a comparison technique to the experiment
using the PCD-CT dataset. We also assume that the measurement from the conventional CT, a single outcome
from a detector, follows Poisson distribution, but with an expected counts A as follows:

A= /Oo 1(B) {XB: Sb(E)} e~ S B, (2)
0 b=1

For a given object, we use the measurements models of (1) and (2) to generate data sets for the PCD-CT
and the conventional one, respectively. We applied filtered backprojection (FBP) with Shepp-Logan filter to the
sinograms to obtain the data sets. Sample images of datasets for conventional CT and PCD-CT measurement
models are shown in Fig. 1(c) and (d), respectively.

For the PCD-CT model, threshold values of energy bins set to the PCD are 20, 67, 101, 113 keV. An
aluminium pre-filtered incident spectrum with 140kVp was used, and the total number of photons is 2.5x10°.
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Figure 1. The overview of liver vessel segmentation pipeline using the simulated PCD-CT and conventional CT dataset.
(a) 3D volume of the ground truth before the addition of iodine, (b) after the addition of iodine, (c¢) 3D volume conventional
CT data, (d) 3D volume of PCD-CT dataset, and (e) 3D patches randomly extracted from each data.

The spectral distortion is modeled in S;(E),'? and water beam hardening correction is applied before we perform
the FBP. The number of PCD channels and views are 601 and 1000, respectively, and the ASTRA toolbox is
used for the projection and FBP with fan-beam geometry.'? The distance from the source to the iso-center and
the distance from the iso-center to the detector are 500 mm, respectively.

2.2 UNET architecture

We use UNET for both PCD-CT and conventional CT. It is worth noting that UNET for PCD-CT takes 4-
channel input unlike the conventional CT one to take advantage of multi-energy information in PCD-CT. The
UNET consists of an encoding process and a decoding process. The context of the image is obtained in the
encoding process, which is combined with the feature map of the decoding process to enable more accurate
localization.'® As shown in Fig. 1(e), 3D patches are extracted from the 3D volume images of each subject and
used for training.
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The UNET structure is mainly composed of 3x3x3 convolution filter, and two convolutions are performed
for each block. The first layer of the encoding block is convolution with stride 2, reducing the size of the image.
The first layer of the decoding block is the transposed convolution with stride 2, and the feature map of the
same image size obtained during the encoding process is concatenated by the skip connection process. Starting
from the second layer, batch normalization, ReL U, convolution with stride 1, batch normalization, and ReLU are
performed in the order. The residual unit is applied to both blocks, 3D convolution with stride 2 is performed
in encoding block to reduce the feature size, and then added to the output feature of the encoding block, and
the identity mapping is used in the decoding block.'* The parameters are updated using the softmax function
combined with dice loss. We obtain two channel outputs for both PCD-CT and conventional CT, the foreground
and background. They are compared pixel-wise to make a binary image.

3. EXPERIMENTS

The experiment is conducted using a total of 56 abdominal simulation phantoms consisting of 33 adult men and
23 adult women.'® A three-dimensional CT dataset consisting of about 100 slices including the liver region is
used, and each slice is generated at 1.5 mm intervals.

As shown in Fig. 1(b), the concentration of iodine in the liver is set to 9.9 mg/ml and the concentration of
iodine in the liver vessel is set to 19.7 mg/ml. The iodine concentration is chosen for low dose agents that can
clinically reduce the risk of contrast-induced nephropathy, which is a challenging case to segment liver vascular
structures.!!

For UNET training, we generate 150 patches having a size of 64x64x64 pixels for each subject. Thus, the
PCD-CT dataset has four input channels in Fig. 1(d), and the conventional CT has one input channel in Fig. 1(c).
Our experiment runs on GeForce RTX 3090. We implemented UNET using a MONAI library, a Pytorch-based
open-source framework,'® which consists of 16, 32, 64, and 128 channels, and uses 2 strides and 3x3x3 kernel
sizes, and the learning rate was 1073. The batch size was 1 and the epoch size was 1500. Training dataset, test
dataset, and validation dataset were divided into 6:2:2 ratios, and performance was evaluated through 5 fold
cross-validation.

3.1 Quantitative assessment

To evaluate the quantitative performance of liver vessel segmentation in PCD-CT and conventional CT, we
measure the dice similarity coefficient (DSC). DSC is defined by the following equation:

21AN B

DSC = ————1,
Al + |B|

0< DSC <1, (3)

where A is the segmented (binary) image for each method and B is also a binary image of the ground truth of
the target. |- | indicates the number of elements in the set. The more similar the segmented results to ground
truth, the higher the DSC value, and the more accurate segmentation is obtained.

The average and standard deviation of DSC scores from 5-fold cross validation on conventional CT and
PCD-CT datasets (56 subjects) are reported in Table 1. Overall, DSC scores are under 0.9 because the low

H Conventional CT PCD-CT
Fold 1 0.861 4 0.024 0.869 + 0.025
Fold 2 0.848 4+ 0.053 0.860 4 0.063
Fold 3 0.866 + 0.024 0.874 £ 0.022
Fold 4 0.839 4+ 0.044 0.853 + 0.041
Fold 5 0.844 £ 0.058 0.858 4+ 0.052

Average 0.852 4+ 0.042 0.863 4 0.043

Table 1. The table of dice similarity coefficients for each fold and average of 56 subjects (mean + standard deviation).
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Conventional CT Groundtruth

Figure 2. Liver vessel segmentation of the female subject. (red arrow: mis-segmented area, blue arrow: disconnected
area)

number of photons and low concentration iodine are used toward the realistic simulation. On average, UNET
with PCD-CT significantly improves the DSC by 0.011 (2.6 times of 0.043 standard deviation) compared with
UNET of conventional CT. For all folds, PCD-CT shows the consistent improvement of liver vessel segmentation
performance over conventional CT. This indicates that PCD-CT enhances the contrast of iodine-injected vascular
structures in the liver, benefiting liver vessel segmentation using deep learning.

3.2 Qualitative assessment

For qualitative assessment, we visualize the three-dimensional vascular structure from the UNET-based liver
vessel segmentation from both conventional CT and PCD-CT in Fig. 2 and 3. We also show the ground truth
vessel structure from the corresponding phantom as reference. We note that each person has a very different
appearance and size of vessels, posing the challenge in deep learning segmentation. Compared to the conventional
CT, UNET on PCD-CT produces the more accurate segmentation similar to ground truth. In the segmentation
results from conventional CT, it is observed that there are disconnected vessels (marked with blue arrow) and
false vessel structures (marked with red arrow). This highlights the benefit of using PCD-CT for diagnosing and
treating liver disease over conventional CT.

4. CONCLUSION

In this paper, we generated PCD-CT datasets by utilizing the characteristics of energy-discrimination capabilities
of PCD-CT, and segmented liver vascular structures by learning them using the deep neural network. The
experimental performance was compared and analyzed with those of the conventional CT dataset through dice
score and 3D vascular structure visualization. The dice score of the PCD-CT dataset were significantly higher
(2.6 times of standard deviation) than that of the conventional CT dataset. For most testing subjects, the
incorrect segmentation of the peripheral part of the vessel was reduced using UNET on PCD-CT. This showed
that UNET segmentation using PCD-CT outperformed the one using conventional CT, improving diagnosis and
management of liver diseases.
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Figure 3. Liver vessel segmentation of the male subject. (blue arrow: disconnected area)
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