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ABSTRACT

Commanders must remain agile and adaptive in the future Artificial Intelligence (AI)-enabled multi-domain bat-
tlespace, where critical decisions are made at the tactical edge. Over-reliance on static, cloud-centric approaches
to Machine Learning Operations (MLOps) compromises such agility and adaptability. These systems must oper-
ate in a dynamic threat environment, and learn to detect novel threats during operation. They must be able to
perform this learning through the execution of tactical MLOps under austere and degraded conditions, especially
limited wireless network bandwidth. In response to these requirements, this paper describes Hawk, a system that
leverages edge proximity for rapid and iterative execution of the Observe stage of the Observe-Orient-Decide-Act
loop. Central to this architecture is the use of tactical cloudlets. These mini data centers provide cloud-like
computing resources without the communication latency to exascale data centers. Hawk enables a human to
guide MLOps at low cognitive load, thus enabling an operational objective to be achieved at speed and scale
while remaining usable and explainable.

Keywords: Sensing, Machine Learning, Video Analytics, Cloudlet, Edge Computing, Cloud Computing, Low
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1. INTRODUCTION: TACTICAL AGILITY

The US Army’s recent inclusion in formal doctrine of its new concept known as Multi-Domain Operations
(MDO)1 necessitates a wide variety of AI-enabled and autonomous systems to augment existing Soldiers and
Units. Much of the recent literature describes different applications of powerful AI systems across the air, land,
sea, space, and cyber domains to increase the lethality of the joint force. The migration toward Joint All Domain
Command and Control (JADC2) and the desire to achieve information dominance require a vastly greater scale
of sensing platforms across all domains. Adaptability, robustness, and trust are frequently identified as high
priorities for AI and autonomous systems that are deployed in future combat environments.

A key goal of AI-enabled systems is to accelerate the OODA (Observe-Orient-Decide-Act) loop. To achieve
this, operational decisions with respect to mission changes must be made at the lowest levels (tactical edge) in
the shortest amount of time, with the most accurate and fresh information available. Although more aggregated
information about a threat may be available at higher echelons, escalating decisions to them from the tactical
edge may suffer unacceptable communication latency and reliability. At the speed and scale of future MDO,
making decisions at the lowest possible echelon is ideal. Tactical agility thus emerges as a key attribute. We
define tactical agility as the ability of a unit employing such a system to rapidly modify and adapt existing
mission parameters in order to preserve or enhance its immediate operational effectiveness.

Today’s cloud-based AI/ML systems have poor tactical agility. They take a phased approach to the end-to-
end processing pipeline, with rigid decoupling of phases. The phases include (a) data collection and creation of a
training set (including labeling), (b) training a deep neural network (DNN) model, (c) deployment of the model,
and (d) inference of operational data with that model. This decoupled and cloud-centric approach was adequate
for the civilian context in which it was conceived, but lacks the tactical agility that is crucial for MDO.

The importance of agility and adaptation for mobile computing systems that embody AI was first identified
over a quarter of a century ago.2 What is new today is the realization that AI/ML processing needs to be
rethought from first principles to achieve these attributes. This paper introduces a new distributed AI archi-
tecture whose functions are tightly-coupled and pipelined in order to maximize tactical agility. Central to this
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Figure 1. Three-tier System Architecture3

architecture is a robust set of tactical cloudlets, which are edge computing nodes with various levels of capability
that support all required local workloads. This architecture is best understood relative to the tiered model
of computing shown in Figure 1. Tier-1 is the cloud, providing strategic assets, information aggregation and
archiving, and failure-resilience that are not available at other tiers. Tier-3 consists of sensor-rich mobile or static
devices that are embedded in the battlespace. These provide raw data capture, preprocessing, and actuation
(for cyber-physical systems) or interaction (for cyber-human systems). Tier-2 can be viewed as forward deployed
infrastructure that “brings the cloud closer.” The network proximity of Tier-2 to Tier-3, and the cloud-like
computing resources available at Tier-2, together enable new tactically agile AI-enabled applications that are
simultaneously bandwidth-hungry, latency-sensitive, and compute-intensive.

This paper explores how to ensure tactical agility of AI and autonomous systems in dynamic operational
environments as they continue to augment units in all domains across the joint force. Appendix A provides
contextual background on the operational scenario and its critical components. Section 2 describes Hawk, an
AI/ML system that achieves tactical agility by seamlessly integrating data capture, inferencing, transmission,
labeling, and training. Generalizing from Hawk, Section 3 details the system architecture and processes that are
essential to achieving tactical agility in AI systems. Section 4 describes related work, and Section 5 summarizes
our conclusions and vision for future work.

2. HAWK: A PIPELINED ARCHITECTURE FOR MLOPS

Hawk is an AI/ML system that tightly couples core internal functions that traditional cloud-based systems pre-
fer to strongly decouple for purposes of economies of scale and standardization. The goal of Hawk in a tactical
environment is to reliably detect an object for which we have very few existing samples prior to a reconnaissance
mission. It achieves this goal through the tight coupling and interdependency of core system processes. The
end to end workflow involves sensors and two kinds of cloudlets, as depicted in Figure 2. We describe these
components below.

Sensor: Converts environmental data into digital format for processing. It is the single platform that en-
ables data collection, without which AI systems could not sufficiently perform their tasks. To be more specific, a
sensing node senses “raw” data from the environment that has to be cleaned, refined, compressed, or otherwise
modified for further analysis. Although human-understandable data could be derived from this raw data at a
different node, we specify the sensing node to be the first node where new, raw data enters the system.

Home-Cloudlet: This node aggregates data samples collected from many different sensors in a given area/system



Figure 2. Operational Employment of Hawk

hierarchy. The node is typically where the mission is launched from and is the primary Command and Control
(C2) node for data fusion, mission progress, and other system statuses. Although humans may be able to access
such information from other nodes, as described below, this node is meant to perform core mission functions
that enable all other functions and processes of the system work seamlessly together in a tightly-coupled manner.

Inference & Training Cloudlets (IT-Cloudlets): As its name implies, an IT-Cloudlet performs two distinct
functions. First, it continuously receives a steady flow of samples from one or more sensors and and performs
inferencing on them. Second, it performs periodic self-improvement of the model used for inferencing by retrain-
ing it with an augmented training set that includes freshly acquired and labeled data. At each IT-Cloudlet,
prioritization and transmission of data to the Home-Cloudlet for labeling happens continuously. From time to
time, when appropriate conditions have been met in terms of training set augmentation, training of a new model
is triggered on an IT-Cloudlet. This new and improved model is locally deployed as soon as it is available.

Workflow: As we step through an entire Hawk mission, we will discuss several key functions and their role in
the overall system. As depicted in Figure 2, IT-Cloudlets (whether in a fixed location or in a ground vehicle) and
various sensors (within ground vehicles or as separate drones) are deployed to the operating locations from the
Home-Cloudlet location containing some Soldier presence. This figure gives an example of the coupling or decou-
pling of Tier 2 and Tier 3 systems shown in Figure 1. The sensors, drone or ground vehicle, are considered Tier-3
while the IT-Cloudlet that runs the inference process is considered Tier-2. Note that it is common for Tier-2 and
Tier-3 to be contained within the same physical platform. The distribution and scale of the IT-cloudlets and
different types of sensors are almost entirely mission dependent. However, there are some obvious constraints,
such as the wireless network range from a drone to a ground vehicle or from ground vehicle to the Home-Cloudlet.
In more detail, hardware, data link protocols, on board power, and other technical characteristics of the deployed
system play a significant role in the operational limitations of the system that Soldiers would need to thoroughly
understand. We show in the diagram that the Home-Cloudlet is in relatively close proximity to the IT-Cloudlets
where network bandwidth is likely not a limiting factor of the system, however, in the extreme worst case such
as an IT-Cloudlet being deployed in geo-stationary orbit, network bandwidth is by far the limiting factor of the
system’s performance.

Based on Mission, Enemy, Terrain & Weather, Troops, Time Available, and Civilian Considerations (METT-
TC), a small unit of Soldiers would first determine the intended target object(s) that they need Hawk to reliably
detect. We will assume they have been provided with a small set of images (approximately 10-20) of a T-101,



Figure 3. Hawk Logical Diagram

a new enemy tank, for example. The unit leverages an ML model that has been pre-trained on data of many
different object classes to take advantage of its trained “feature detector”, a neural network architecture that
allows for the detection of various general features of many different types of objects. It performs the initial
“retraining” of this model on the given small dataset. Because of the small size of this dataset, the retraining
should only take a few minutes. Once trained, the Soldiers would test the new model on a hold out, or test set
to ensure the model achieves some reasonable level of performance, keeping in mind that they’ve only trained
it on a very small dataset (which implies a significantly reduced expectation of accuracy). If the initial model,
M0, is suitable, then it is deployed to all IT-Cloudlets planned for the upcoming mission. If such cloudlets have
already been staged in their respective locations, the model would of course need to be transmitted wirelessly
to them. Thus, in severely limited network bandwidth environments, this initial model must be deployed on the
IT-Cloudlets prior to departure from the Home-Cloudlet location.

Figure 3 shows the logical structure of Hawk and the flow of information across the entire system. Sensor data
is processed by the models running on the IT-Cloudlets, where a small number of high priority samples are then
transmitted to the Home-Cloudlet for inspection and labeling by Soldiers. The labels are sent back to the IT-
Cloudlets to store in preparation for future model retraining iterations. D0 represents the data rate that Sensor0
transmits raw data to IT-Cloudlet0 while M0t represents the current model running inference on IT-Cloudlet0
at time t. B0 represents the rate at which high priority samples are transmitted to the Home-Cloudlet, which
can vary greatly depending on mission configuration as well as availability and reliability of network bandwidth.
Notice in the top right of Figure 3 that there is a Higher Headquarters (HQ) node connected to the Home-
Cloudlet. One can imagine many physical and logical network hops lie between the Higher HQ node and the
cloud itself. This diagram reinforces the point that the tight coupling of AI/ML processes for tactical agility
cannot be realized with dependencies on cloud resources.

The mission is now ready to execute as all IT-Cloudlets are running the deployed initial model and all sensors
are prepared to monitor their geographic areas. Once the commander so determines, the mission begins and
the sensors begin transmitting data to the IT-Cloudlets running inference processes. Refer to Figure 4 to follow
the sequence of events of a toy mission example as a function of time where time flows from top to bottom
and the processes that execute on each cloudlet from left to right. In this mission, we have three total sensors
and two IT-Cloudlets. The first events to occur are Sensor 1 and Sensor 2 collecting Sample A and Sample B,
respectively. We call Infer. A and Infer. B the inferencing of the first and second samples across the set of
IT-Cloudlets. Because these samples are transmitted to the same IT-Cloudlet (1), this cloudlet must perform
local “Sample Prioritization”, which is a form of active learning. Upon inference, each sample is assigned a score
(or pseudo label) representing the probability that the given sample contains the threat object identified prior to
mission start. The set of samples that have been inferenced at any point in time will be prioritized according to
this score and only the highest scoring samples are then transmitted to the Home-Cloudlet. The rate at which
the prioritized samples are sent to the Home-Cloudlet depends on whether network bandwidth is abundant and



Figure 4. Time Diagram of a Toy Hawk Mission

reliable as well as the rate at which the Soldier(s) can label. If network bandwidth is not a concern, then the
IT-Cloudlets will only transmit samples to the Home-Cloudlet at the same rate that the Soldiers can label.
However, if the network is limited or unreliable, the IT-Cloudlets will transmit as many samples as the link data
rate allows. We see from the diagram that Sample B had been assigned a greater score, and is thus transmitted
to the Home Cloudlet. Sample B is labeled at the Home-Cloudlet, which is immediately transmitted back to
IT-Cloudlet 1. Let us assume for simplicity that we would like to retrain our inference models after every single
“positive” label received (this is tunable in reality). This means that after receiving the label for Sample B,
IT-Cloudlet 1 retrains model M0, which requires some period of time, after which M1 is produced. The key
here is that while model M1 is being trained on IT-Cloudlet 1, model M0 is still inferencing incoming samples
from Sensor 1 and Sensor 2 (although it is not depicted in this diagram for visual clarity). Samples E and F are
transmitted to IT-Cloudlet 1 to be inferenced with Sample E being selected from the prioritization process and
sent to the Home-Cloudlet for labeling, repeating the process. Also critical to note here is that similar events
occur in parallel with Sensor 3 and Samples C, D, and G via IT-Cloudlet 2. Notice that prioritized samples
are transmitted from multiple IT-Cloudlets to the Home-Cloudlet concurrently while also receiving respective
labels for previous samples from the Home-Cloudlet. Once conditions are met, concurrent training and inference
occur on the same IT-Cloudlet until the new model has completed training. Each subsequent new model is
deployed with the assumption that it will perform in a superior manner than its predecessor because it will have
been trained on an augmented training set containing many more examples of the intended threat object. Data
collection off the sensor platforms are also tightly integrated into this iterative process. The final key aspect of
the system is the human labeling function. Hawk only adds positive examples to a training set if those examples
have been confirmed as positive by the human labeler. The labeling rate of the human directly influences training
set growth, hence the triggering of new model training, and thereby the rate of self-improvement.



Extensive experimental evaluation of Hawk has shown impressive results in terms of the number of positive
samples detected even under extremely austere network conditions. Even at 12 kbps, Hawk is effective on data
from drone surveillance, planetary exploration, and underwater sensing. Hawk is able to discover up to 87% of
the positives that would have been created by a brute force model. Such a model would have been created by
fully supervised learning, which involves transmitting all data to the cloud and labeling it there.

We have now described the components, functions, and sequential processes of Hawk. Why can this system
not be designed leveraging the scale and resources of the cloud? Classic ML pipelines strongly decouple data
collection, curation, model training, and inference. In our context, because the data we must inference is at
the tactical edge, we would need to ensure a stable internet connection from sensors all the way to the cloud
where our inference and training would occur. Not only would the inference latency be extremely high from
the perspective of the Soldiers positioned locally at the Home-Cloudlet, the number of dependencies on network
paths well beyond the unit’s control would greatly impact success of the mission. Similarly, the cloud is optimally
designed for training and inferencing of very large datasets, which is the opposite of what the Hawk system needs
to perform at a suitable level. While traditional ML approaches clearly do not apply to this scenario, a tightly-
coupled, interdependent, and parallel AI/ML system enabled by edge computing best achieves the desire for
tactical agility in future MDO.

3. TACTICAL AGILITY FOR AI-ENABLED OPERATIONS

In Section 2 we introduced Hawk and described its components, functions, and sequential and parallel processes.
Hawk is designed as a specific architecture for a specific purpose and mission set. In this section, we discuss
unique characteristics of a system such as Hawk and explore the broader implications of the design on tactical
agility. We first describe the simultaneous and parallel processing that are critical to a tactically agile system.
Second, we discuss the tightly-coupled interdependencies that were briefly mentioned in the previous section.
Finally, we summarize the advantage edge computing has over the traditional cloud paradigm in the context of
tactical agility for MDO.

Traditional ML model development separates training and inference as sequential steps in the ML Ops process.
Technically, Hawk follows the same paradigm. However, the difference is while the IT-Cloudlet uses model M0

for inference, it may be currently training model M1. This ability to train a new model while simultaneously
performing inference of incoming samples from sensors is a critical design decision that saves time, which allows
for the system to achieve a much greater level of performance in a shorter period of time overall. Further, sample
prioritization runs concurrently with inferencing, thus constantly reprioritizing samples according to their score.
With respect to network transmission, high priority samples are sent to the Home-Cloudlet from the IT-Cloudlets
while text-based labels of previous samples are sent from the Home-Cloudlet back to the IT-Cloudlets. Further,
model and network functions occur concurrently, unless the training process happens to be waiting to receive its
nth sample for retraining. Human labeling effort takes place at Soldiers’ discretion, concurrently with all of the
above processes. Execution of all these tightly-coupled processes in a tactical area without requiring cloud access
greatly enhances tactical agility. The loosely-coupled and serialized phasing of traditional cloud approaches
combined with long latency/low bandwidth simply cannot achieve such tactical agility.

We now discuss the impact of the tight coupling and interdependence of the subsystems of an AI/ML system
such as Hawk. We explained how several primary system functions execute in parallel to avoid not only network
latency but also unnecessary process serialization (inference and training). Figure 5 depicts the interdependencies
of an iterative learning system such as Hawk. The clearest dependence in a system learning in real time is that
of the performance of the currently inferencing model version on the data it had access to for training. If a
given model never gets retrained, it will not improve, but will just perform at the same level of accuracy for the
duration of the mission. The inference accuracy is partially dependent on the ability of individual sensors to
generate a representative sample distribution. If the sensors are quite far from each other with almost no chance
of scanning the same terrain, then this is not an issue. However, in concentrated sensor clusters, such as a drone
swarm, it is very likely many sensors produce duplicate samples, wasting processing time on the IT-Cloudlets.
To meet the proper conditions for model retraining, an IT-Cloudlet must receive some number of labeled samples
from the Home-Cloudlet. This is directly dependent on the reliability of the network connections between the
two as well as the rate at which the humans can label. Moreover, the number of labeled samples (containing



Figure 5. Dependency Graph of Hawk Core Functions

the threat target) is heavily dependent on the accuracy of the currently inferencing model and the ability of the
sample prioritization algorithm to transmit the samples most likely to contain the target object. A cloud-based
approach would not be able to support a tactically-agile AI/ML system so tightly-coupled as this.

The critical feedback loops present in a system like Hawk are between inferencing, sample prioritization,
transmission, labeling, and training. Without the fast, effective, and efficient function of this cycle, the proper
feedback will not be recirculated into the system. This is critical as a system that learns in real time must be
able to leverage relevant, fresh, and quality data as quickly as possible in order to achieve its mission objectives.
While effectively closing the feedback loop is difficult, it is even more challenging to produce a feedback loop
that provides quality information and actually improves the performance of the system. This is why all of
the tightly-coupled and interdependent system functions must be designed and engineered appropriately to the
respective mission set. Tight feedback loops for systems that learn in real time is largely a foreign concept to
how the joint force currently operates. To build and maintain trust in AI/ML systems in general, Soldiers must
experiment with such new systems to develop familiarity and comfort as they would with a new rifle or tank.

Designing and engineering tactical agility into an AI/ML system will not be easy, however, it can be done
with the right vision. Leveraging the scale, low cost, and standardization of cloud resources is in many cases
the correct answer, especially for business applications or offline data processing. However, with respect to
time-sensitive reconnaissance operations with limited knowledge and data of potential enemy targets (e.g. tanks,
missile launchers, etc.), an edge computing approach is optimal. In such missions, there is often a severe mismatch
between the incoming sensor data rate and the much lower backhaul bandwidth to higher HQ and the Internet.
Degraded, Intermittent, and Limited (DIL) conditions may also constrain bandwidth to the point of rendering
cloud-centric systems ineffective. Edge computing employs the power and flexibility of tactical cloudlets that
enable the effective and efficient operation of an AI/ML system that can learn in real time (with minimal human
cognitive load) through a set of tightly-coupled and interdependent core functions. The nature of such a system
renders it tactically agile.

4. RELATED WORK

The role of cloudlets in hostile environments was first explored a decade ago by identifying the inherent limitations
of the cloud for applicable domains.4 The literature concerning the need for edge computing in a tactical
environment has exploded in the past several years due in part to the recognition that AI/ML systems will be
force multipliers at the lowest echelons for MDO. Relative to that large body of literature, this paper shows
through a specific in-depth case study exactly how edge computing enables tactical agility to be achieved. We
are not aware of any other work that achieves the tactical agility of a Hawk-like system.

Although these systems have significant upside potential in their ability to enhance information dominance
and lethality, they do require additional computing, storage, network, etc. resources to function effectively and
reliably while being trusted by Soldiers. In Task Objective three of his commentary, de Czege discussed broader
implications of current strategy and the need for the US to modernize our obsolete way of war, by adapting to the
revolutionizing impact of the technology of war.”5 More technically focused related work consists predominantly
within four main areas: network, edge computing generally, edge learning approaches, and human-machine
teaming, all critical aspects of ensuring tactical agility.



4.1 Network

To realize the potential that a growing number of AI/ML systems can bring to the edge, a robust, resilient tactical
network architecture must be able to support their data needs. Kiser et al. discussed how the Air Force’s Combat
Cloud (CC) would enable data distribution and information sharing within a battlespace. The CC must be self-
forming, self-healing, gratefully degradable and redundant, which would enhance Command and Control (C2)
and operational agility for joint force and allies.6 Perry et al. described a tree-search approach to compute Value
of Information (VoI) of individual personnel in a tactical environment, which determines whether a given piece
of information is relevant to an operator.7 This calculation resulted in an efficient mechanism to minimize excess
network traffic in austere environments. Barz et al. explored the characteristics of adaptive communications at
the tactical edge and focused partly on “joint orchestration of network, processing, and AI” to improve decision-
making and other actions critical to this domain.8 Inherent in this work was the interdependency between
networks and AI systems that we discussed earlier. Mohlenhof et al. proposed a reinforcement learning-based
approach to improve the use of network resources in DIL networks. RL agents were trained to accomplish the
goal, which was to optimally utilize tactical network resources.9 Judd et al. described the ongoing development
of SMARTnet, a system designed to transform, prioritize, and control the flow of information across tactical DIL
networks by understanding the current military context through the use of AI/ML approaches.10

4.2 Edge Computing

Edge computing is undoubtedly the key enabler for tactical agility via AI/ML operations. Satyanarayanan
provided a contemporary assessment of where edge computing fits in the long-term evolving computing paradigm
and described a vision of its most applicable use cases moving forward.11 Ruvinsky et al. defined an AI
system design and framework that leverages mobile High Performance Computing (HPC) hardware, ML, and
Internet of Things (IoT) to generate near-real-time analytics in a tactical operation environment.12 Park et
al. applied tactical HPC systems to the compute-intensive urban reconnaissance use case to enhance situational
awareness and tactical intelligence.13 Alshabana, et al. measured the performance tradeoffs across different GPU
models and deep learning workloads.14 They showed the nuanced implications of using GPUs suitable for the
tactical edge compared to those more commonly used in the large-scale datacenters. Perazzone et al. studied
adaptive resource allocation for resource-constrained environments by determining where to place inference task
execution which ultimately cause tradeoffs between accuracy and latency.15 Lewis et al. introduced the concept
of provisioning tactical cloudlets in austere environments where resource-constrained edge devices could not
provide adequate computing resources for the given tasks and cloud resources would introduce unacceptable
latency.16 Chin et al. introduced the TAK-ML (Tactical Assault Kit-Machine Learning) framework that combines
Android TAK (ATAK) handheld devices as well as TAK servers to offload the cognitive burden on Soldiers and
commanders of the myriad data collection and analysis tasks in tactical environments.17

4.3 Edge Learning approaches

While the previous subsection described the critical need for edge computing in general, we now focus on specific
applications to AI/ML systems of edge computing. Langleite et al. conducted a study on explainable AI and
addressed the need for big data solutions to support AI on tactical infrastructure.18 The authors designed
their experiments around the foundational human cognition concepts of fast and slow thinking to describe how
humans can use such powerful computation. Dasari et al. discussed deep neural network optimization approaches
for tactical unmanned ground vehicles.19 This type of analysis will continue to become more critical as more
AI-enabled systems are deployed to the tactical edge. Misra et al. introduced an approach to dependable ML-
based inference on resource-constrained edge devices.20 This method used edge devices to identify and leverage
suitable peer IoT nodes for state sharing and improvement of intelligence tasks. Geerhart et al. explored model
normalization in resource-constrained environments through reducing the number of parameters and choosing a
model with a small computational cost.21 Busart studied how federated learning could be conducted across edge
computing devices connected with limited bandwidth networks.22 His results showed that the specific federated
learning architecture allowed for continuous learning upon initial deployment, which improves performance over
time. Cirincione and Verma described the applicability of federated learning to MDO, specifically at the tactical
edge.23 They also defined the operational factors impacting the deployment of ML systems along with proposing
strategies for AI/ML deployment techniques. Blasch, et al. studied the merging of AI/ML advancements with



sensor data fusion (SDF), in part documenting the impacts of such merging to the success of future multi-domain
operations.24 Toth and Hughes recounted initial success with sensor and data interoperability between several
countries’ systems, however, it led to an overwhelming volume of data to humans on the ground. They describe
CATE (Collaborative AI at the tactical edge), which “is an effort to develop a prototype AI/ML architecture that
enables simple, rapid integration multi-agent AI technology into the processing, exploitation, and dissemination
chain” at the edge.25 The authors in Ref. 26 defined a hybrid-cloud architecture that would enable iterative
model retraining in tactical environments.

4.4 Human-machine teaming

During operation AI systems requires both automated processes and humans interact to some extent, thus
we provide recent related work on human-machine teaming. Rawat presented challenges and perspectives on
AI-enabled tactical autonomy that analyzed in part human-machine interfaces to improve trust, efficiency, and
efficacy of autonomous systems.27 Clarke and Knudson “developed a framework for analyzing task-to-technology
matches and team design for military human-machine teams”. Situational awareness, decision making, and team
dynamics were the primary topics around which the framework was based.28 Warren and Hillas examined the
concept of trust and other related aspects of human-machine teaming along with the inherent nature of AI
technologies being dual-use, both directly having significant overlap with our work.29 Schaefer et al. from Army
Research Labs (ARL) described in detail four areas of critical research relating to human-autonomy teaming at
the tactical edge: enabling Soldiers to predict AI, quantifying Soldier understanding of AI, Soldier-guided AI
adaptation, and characterizing Soldier-AI performance.30 These areas directly relate to Hawk as described and
intersect with the implications of an AI/ML system that can learn in real time.

5. CONCLUSION AND FUTURE WORK

In this paper we have described Hawk, an AI/ML system that continuously improves its ability to accurately
detect targets determined by Soldiers given limited data, and discussed its broader implications for tactical
agility in MDO. It is a distributed AI/ML architecture that leverages a tightly-coupled set of functions such
as labeling, sensing and data collection, model training, model inference, and data transmission along with the
critical system-level parallelism due to the system’s interdependent nature. We also addressed the key enabler
for tactical agility that is robust edge computing through the employment of tactical cloudlets. These cloudlets
host a diverse set of computing workloads that allow for continuous, real-time, and online learning critical for
a complex and dynamic operational environment. While leveraging the scale and resources of the cloud for
static environments with high bandwidth network connections is ideal, austere environments at the tactical
edge require a uniquely designed and deployed edge computing architecture to maintain an advantage over an
adversary. While fielding and deploying AI systems at scale may seem complex, it has the potential to become
a revolutionary change in military doctrine if designed and engineered in a manner that minimizes additional
human cognitive effort and maximizes hybrid human-machine tactical agility in MDO.

In future work, we will expand on the application of Hawk to specific scenarios with potential derivative
systems that may perform quantitatively better with less human supervision. We will also study the tradeoffs
between more or less human involvement both in the mission planning and monitoring phases to ensure we do not
remove the human from functions requiring ethical evaluation as well as where expert knowledge and experience
may be more useful than automation.
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APPENDIX A. KEY COMPONENTS OF AN AI-ENABLED ENVIRONMENT

For the foreseeable future, the vast majority of AI and autonomous systems will be used for intelligence,
surveillance, and reconnaissance (ISR) mission sets. This is because the technologies underlying such mission
sets, especially with respect to computer vision, have matured rapidly over the past decade. A joint force can
leverage powerful algorithms to detect and track relevant targets for long periods of time, possibly traveling
at high speeds over long distances. Moreover, ISR systems are ideally suited to leverage AI systems to
conduct tasks that are otherwise dangerous, monotonous, or boring, especially on longer timespans. In the
context of ISR missions, the terms below characterize key components of the operational environment.

Sensor: A sensor is any physical device that converts environmental stimuli such as electromagnetic energy
in given frequency bands to electronic, and more specifically, digital data. Sensors can be as complex as
a reconnaissance satellite or as simple as a microphone or tiny camera. They are the primary mechanism
through which US forces collect tactical, operational, and strategic information separate from human intelli-
gence or other information collection. Sensors can be used to provide general information across both large
geographic areas as well as specific information within a small area. Overall, sensors are heterogeneous across
many variables, including the domain in which they operate, and can be tailored to provide value to any
anticipated mission set. The number of sensors in future MDO is expected to scale greatly, especially with
respect to (semi-) autonomous systems and those that are generally expendable/attritable. The primary
objective of a sensor is to generate the highest quality of data used for analysis and a decision whether to
act on it. This paper primarily addresses AI systems leveraging multiple sensors.

Shooter: A shooter is a platform that most associate with military operations: a tank, aircraft, ship,
mortar system, artillery, even an individual Soldier with a rifle. As expected, shooters are heterogeneous as
well in their scale, speed, lethality, and domain. In every case, in some form or another, a shooter requires
information derived from a sensor, whether from a human or a machine. Although in practical terms shooters
typically have many sensors co-located on platform, we note the “shooter” is simply the mechanism which
applies some kinetic or non-kinetic effects on a target, whether it leveraged information from an onboard or
offboard sensor.

C2 Node: This node is usually a separate intermediate point where, based on information provide by a
sensor, a determination is made by a human as to whether to engage a target. This is where the nuanced
difference between “human-in-the-loop”and “human-on-the-loop” matters. With the former, a shooter will
not engage a target without first receiving an explicit order from the C2 node while with the latter, the
human at the C2 node is simply merely aware or notified that a sensor has received information that is being
passed to the shooter for engagement. From an ethical perspective, the latter method will likely only be
used in scenarios where risk of collateral damage is minimum.

Intermediate Processing Node: This node performs high-level computation on data such as format
conversion, compression, or otherwise change the data such that it’s compatible with what C2 or shooter
node requires, or even other sensing nodes. We include it in our list here because it may be the case that
the sensor-C2-shooter chain may depend on this node given its computational capabilities, security features,
physical location, network capacity, echelon placement, etc. These nodes are often co-located with a sensor,
C2, or shooter node but can also be a stand-alone node as previously described. Processing nodes will only
become more ubiquitous on the battlefield as edge computing systems are developed and fielded to units at
higher echelons and processing-heavy AI systems require their support to generate the greatest operational
advantage.
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