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ABSTRACT

We study the stochastic properties of gene regulation taking into account the non-Markovian character of gene
transcription and translation. We show that time delay in protein production or degradation may change the
behavior of the system from stationary to oscillatory even when a deterministic counterpart of the stochastic
system exhibits no oscillations. Assuming significant decorrelation on the time scale of gene transcription, we
deduce a truncated master equation of the reactive system and derive an analytical expression for the autocor-
relation function of the protein concentration. For weak feedback the theory agrees well with with numerical
simulations based on the modified direct Gillespie method.
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1. INTRODUCTION

In the recent years, there has been a significant interest in the stochastic modeling of gene regulatory networks.1–3

There is considerable experimental evidence that stochasticity plays a major role in such networks,4, 5 both due
to intrinsic (small numbers of molecules involved in biochemical reactions) and extrinsic (complex extracellular
signaling, cell cycle irregularities, etc.) factors. There are several different approaches to the modeling of
stochastic chemical reactions: numerous flavors of Gillespie algorithm,6–9 exact master equation analysis, as
well as various simplified descriptions based on the Fokker-Planck or Langevin equations (see3 for a review). One
major difficulty that naturally arises in the analysis of gene networks is the vast separation of time scales between
the fast reactions (dimerization, binding/unbinding) and slow reactions (transcription, degradation). There have
been a number of papers devoted to the development of reduced descriptions of these systems using the idea
of quasi-equilibrium of fast processes compared with slow dynamics (10 and references therein). However, all of
these approaches implicitly assume that all of the reactions (fast and slow) are Markovian processes which obey
Poissonian statistics. In this regard, it is important to realize that transcription and translation are not only
slow but are compound multi-stage reactions involving the sequential assembly of long molecules comprised of
many elementary reactions. Thus, by virtue of the central limit theorem, such processes obey Gaussian statistics
with a characteristic mean delay time. Both analytical and numerical modeling of such processes is needed in
order to account for their non-Markovian nature.

The behavior of stochastic delay-differential equations (SDDEs) has been studied in.11–13 In these papers,
various approximate methods of treating SDDEs were developed. The moment equations for the solutions of
linear SDDEs and their stability have been studied in.11 The limit of small delays, where a univariate non-delayed
stochastic differential equation can approximate the initial SDDE, has been considered in12 in detail. In,13 a
model noise-driven bistable system with delayed feedback in the limit of small noise and small magnitude of the
feedback has been reduced to a two-state model with delayed transition rates for which analytical description
could be developed. The deterministic dynamics of gene regulatory circuits with delayed transcription/translation
have been recently addressed in.14, 15 Lewis14 also presented the results of approximate stochastic simulations
of a simple autorepressor model for Zebrafish somitogenesis using Euler finite difference method.
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The goal of the present work is to apply and extend these methods to the models of biochemical reactions
comprising gene regulation. We will present a stochastic algorithm for simulating non-Markovian reactions.
Unlike Ref.,14 our algorithm generalizes the exact direct Gillespie algorithm. We also describe a theoretical ap-
proach to formulate the simplified master equation for the biochemical kinetics which involves delayed reactions.
It is then used to calculate the correlation function of the delayed stochastic system analytically. We study two
specific examples: single-gene transcription with delayed degradation, and a single-gene auto-repressive network
with delayed negative feedback. In agreement with earlier numerical work14 we find that intrinsic stochastic
fluctuations lead to the occurrence of oscillations in these systems even when their deterministic analogs do not
oscillate.

2. SINGLE-GENE PROTEIN PRODUCTION-DEGRADATION MODEL

We begin with an extremely idealized model for unregulated single-gene protein production and delayed pro-
tein degradation. Here we ignore the distinction between transcription and translation and call the combined
transcription/translation process production. This simple model is considered here to illustrate the methods and
techniques we use to analyze non-Markovian effects in more realistic models of gene regulation.

The reaction of production of protein X is written as

∅t A−→ Xt, (1)

where A is the protein production rate. Here and below the superscript indicates time at which the particular
reacting component is taken. The degradation of protein with rate B is written as

Xt B−→ ∅t. (2)

Both reactions (1) and (2) are assumed to happen without any delay and so they obey the Poissonian statistics.
Let us suppose that there is another “delayed” mechanism of protein degradation

Xt C−→ ∅t+τ . (3)

which leads to the decay of one protein molecule after a certain time delay τ after this reaction is initiated. This
type of process may occur if the protein degradation is mediated by production of a certain enzyme (a protease)
which takes a finite time to accomplish.

Delayed degradation provides a simple form of a delayed negative feedback. It is well known that sufficiently
strong delayed negative feedback may lead to periodic oscillations.

Let us first briefly outline the deterministic dynamics of this system in the rate approximation which is
described by the following linear delay-differential equation:

dx

dt
= A − Bx(t) − Cx(t − τ). (4)

This system has one fixed point x∗ = A/(B+C) whose stability determines the transition to oscillations. Looking
for a solution x(t) in the form x(t) ∼ eλt, we find the eigenvalues lambda = µ + iω in the following form

µ =
1
τ

Re(W (−τCeτB)) − B, (5)

ω =
1
τ

Im(W (−τCeτB)). (6)

where W (z) is the Lambert function defined via equation W (z)eW (z) = z. By solving (5), (6) for µ = 0 and
ω �= 0 we find the condition for Hopf bifurcation. The neutral curve is shown in Fig.1, where the instability
domain is located above the curve.

Evidently, in this linear model, the amplitude of the oscillations grows indefinitely without saturation. In a
real system, nonlinearity saturates this exponential growth.
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Figure 1. Neutral curve of the Hopf bifurcation (solid line). The upper and lower squares indicate the fixed parameters
for which correlation functions are plotted in Fig.3a,b respectively. The dashed line shows the cross-section of parameter
space which corresponds to Fig.4

Stochastic description

Now we take into account the fact that chemical reactions (1-3) occur randomly in time according to their
respective rates. Since the number of molecules involved is often small, random fluctuations of copy numbers are
important and a stochastic approach should be used to describe the behavior of such a system.

Let us denote P (n, t) the probability of having n monomers at time t. Then the master equation for the time
evolution of the probability P (n, t) can be written as

dP (n, t)
dt

= A (P (n − 1, t) − P (n, t)) + B ((n + 1)P (n + 1, t) − nP (n.t)) +

+ C
∞∑

m=0

m (P (n, t; m, t − τ) − ΘnP (n, t; m, t − τ)) , n = 0..∞ (7)

where P (n, t; m, t− τ) is the joint probability of having n molecules at time t and m molecules at time t− τ and
the multiplier

Θn =
{

0, n = 0
1, n > 0 (8)

is added to account for the fact that P (n, t), P (n, t; m, t − τ) should remain zero for negative n.

This set of equations is not closed because the one-point probability distribution is determined by the two-
point probability distributions on the r.h.s. In order to make progress, we assume that the time delay τ is large
compared with other characteristic times of the system so that events at time t and t−τ are effectively decoupled.
Under this approximation, we can write

P (n, t; m, t − τ) = P (n, t)P (m, t − τ) (9)

In fact, large τ is a necessary but not a sufficient condition for this to hold, because as we will see below, strong
delayed feedback leads to significant correlations over long periods of time. Therefore, an additional condition
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for the applicability of (9) is to have relatively weak feedback. Adopting this approximation, we obtain

dP (n, t)
dt

= A (P (n − 1, t) − P (n, t)) + B ((n + 1)P (n + 1, t) − nP (n, t)) +

+C
∞∑

m=0

mP (m, t − τ) (P (n + 1, t) − ΘnP (n, t)) ,

= A (P (n − 1, t) − P (n, t)) + B ((n + 1)P (n + 1, t) − nP (n, t)) +
+C〈n(t − τ)〉 (P (n + 1, t) − ΘnP (n, t)) , n = 0..∞ (10)

Autocorrelation function
For a stationary random process n(t), the autocorrelation function, K(T ), is given by

K(T ) = 〈n(t)n(t + T )〉 − 〈n(t)〉2 (11)

=
∞∑

n=0

nPs(n)〈n′, T |n, 0〉 − 〈n〉2. (12)

where Ps is the stationary probability and 〈n′, T |n, 0〉 is the mean number of proteins at time T given that it
was equal to n at time 0. In order to calculate the correlation function we make use of the generating function

G(s, t) =
∞∑

n=0

snP (n, t) (13)

One can easily see the relation between G(s, t) and various moments (only the first two moments are shown):

∂G

∂s
|s=1 =

∞∑

n=0

nsn−1P (n, t)|s=1 =
∞∑

n=0

nP (n, t) = 〈n(t)〉, (14)

∂2G

∂s2
|s=1 =

∞∑

n=0

n(n − 1)sn−2P (n, t)|s=1 =
∞∑

n=0

n(n − 1)P (n, t) = 〈n2(t)〉 − 〈n(t)〉. (15)

Using the generating function, we can convert the infinite set of ordinary differential equations (7), to a single
partial differential equation for G(s, t):

∂G

∂t
= (s − 1)

(
AG(t) − B

∂G(t)
∂s

+ C
〈n(t − τ)〉

s
(P0(t) − G(t))

)
. (16)

If the mean number of protein molecules is large, the states with n = 0 are rare, and P0(t) can be neglected in
(16). Then the stationary solution for G is readily derived

Gs(s) = s−
C
B <n>se

A
B (s−1), (17)

where 〈n〉s stands for the stationary mean: 〈n〉s = 〈n(t → ∞)〉 and the normalization Gs(1) = 1 has been taken
into account.

In order to obtain the equations for the mean and higher moments, we expand the generating function into
a power series of s − 1:

G(s − 1, t) = 1 + (s − 1)α(t) +
1
2
(s − 1)2β(t) + ... (18)

where the functions α(t) and β(t) are related to the lowest two moments, α(t) = 〈n(t)〉, β(t) = 〈n2(t)〉 − 〈n(t)〉.
Substituting (18) into (16) we obtain

dα

dt
= A − Bα(t) − Cα(t − τ), (19)

1
2

dβ

dt
= Aα(t) − Cα(t − τ) − Bβ(t) + Cα(t)α(t − τ). (20)
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As expected, the equation for the mean (19) coincides with Eq.(4) obtained above with the rate-equation ap-
proximation. It can be readily solved with the symmetry condition α(t) = α(−t) and initial condition α(0) = n:

α(t) = (n − 1)
σ(t)

1 − ζe−λτ
+

(
1 − A

B + C

)
σ(t)

1 − ζe−λτ
+

A

B + C
, (21)

where

σ(t) = e−λt − ζeλ(t−τ), 0 < t < τ

σ(Nτ + t) = e−Bt(σ(Nτ) − C

∫ t

0

σ((N − 1)τ + t′)eBt′dt′),

λ =
√

B2 − C2, ζ =
1
C

(B − λ). (22)

The solution (21),(22) exists if B > C, i.e. below the deterministic Hopf bifurcation. To complete the calculation
we find

αs =
A

B + C
, (23)

βs =
A(AB + BC + C2)

B(B + C)2
(24)

and insert (21)-(24) into (12):

K(T ) =
σ(T )

1 − ζe−λτ

∞∑

n=0

n(n − 1)Ps(n) +
(

1 − A

B + C

)
σ(T )

1 − ζe−λτ

∞∑

n=0

nPs(n) =

=
σ(T )

1 − ζe−λτ

d2Gs(s)
ds2

|s=1 +
(

1 − A

B + C

)
σ(T )

1 − ζe−λτ

dGs(s)
ds

|s=1 =
A

B

σ(T )
(1 − ζe−λτ )

, (25)

where T = Nτ + t.

Stochastic simulations based on Gillespie method

In order to test the validity of our approximations and analytical results, we performed numerical stochastic
simulations of the original system of chemical kinetic reactions (1-3). Here we introduce modifications to the
direct Gillespie (DG) algorithm6 which would allow us to treat delayed reactions.

Suppose the system consists of N components Xi which react through M elementary reaction channels Rµ.
According to the DG scheme, time is advanced from one elementary reaction to the next. At every “stop” one
has to determine the time to the next reaction and which reaction it will be. For Markovian processes, the
distribution of times until the next reaction is exponential

P (τ) =
∑

µ

aµ exp

(
−�t

∑

µ

aµ

)
(26)

where aµ = cµhµ is propensity of the channel Rµ. The choice of the next reaction is made based upon the
following discrete distribution,

P (µ = µ′) = aµ′/
∑

µ

aµ. (27)

In the case when some of the channels are non-Markovian, we modify the Gillespie algorithm as follows. At
every “stop” we perform the same selection of the next reaction time according to the distributions (26), (27).
If the next reaction time is chosen to be t∗ but the selected reaction is delayed, it is placed in a stack, so it will
actually be completed at time t∗ + τ . If however the chosen reaction is Markovian, the time to the next reaction
tm is compared to the times of previously scheduled delayed reactions. If none of those scheduled reactions are
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τ

Figure 2. Scheme of numerical simulation

to occur before t∗, the time is advanced to t∗, and the process repeats. If however, there is a delayed reaction
scheduled for completion for td < tm, the last selection is ignored, the time advances to td, the scheduled reaction
is performed, and the selection process repeats (see Fig.2, where td = t∗ + τ).

Let us formulate modifications to the Direct Gillespie algorithm which are necessary to correctly simulate the
stochastic system with some delayed reactions. Our algorithm consists of the following steps (see also Fig. 2):

1. Input values for initial state (x1, . . . , xN ), set t = 0.

2. Compute propensities aµ, µ = 1..M .

3. Generate uniform random numbers u1, u2.

4. Compute the time interval �t until the next reaction according to distribution (26), viz. �t = −(lnu1)/
∑

µ aµ.

5. Check if there has been a delayed reaction scheduled to occur at time td within the range between t and
t + �t.

a) if yes, then the results of steps 2,3 and 4 are ignored, time is advanced to t = td, Xi are updated
according to the delayed reaction. Return to step 2.

b) If no, proceed to the step 6.

6. Find the channel of the next reaction µ from the distribution (27), viz. take µ to be the integer for which∑µ−1
ν=1 < u2a0 ≤ ∑µ

ν=1, where a0 is the total propensity, a0 =
∑M

ν=1 aµ .

7. Update time t → t + �t. If the selected reaction µ is Markovian, update Xi in accordance with R(µ). If
the reaction is delayed, Xi update is postponed for time t + τ . Return to step 2.

We calculated the correlation function numerically according to the standard formula implying ergodicity of
the underlying stochastic process

K(T ) = lim
t→∞

1
t

∫ t

0

n(t′)n(t′ + T )dt′ −
[

lim
t→∞

1
t

∫ t

0

n(t′)dt′
]2

. (28)

The comparison between correlation functions derived analytically and numerically is shown in Fig.3 for two
different sets of parameters indicated by black squares in Fig.1. We use A = 100, B = 4.1 and τ = 20. So
the delay time is large compared with the characteristic equilibration time B−1 ≈ 0.25, which is necessary to
justify the master equation (7). One can see that when the parameters are such that the system is near the Hopf
bifurcation (Fig.3a), the agreement between our analytical method and the direct Gillespie simulation is not as
good. This is to be expected since the processes at times t and tτ are strongly correlated (the secondary peak
of the correlation function is large). However, if the system is far from the bifurcation and the influence of the
delay term is weaker, then the curves virtually coincide (Fig.3b). In Figure 4 we plot the height of the secondary
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Figure 3. Comparison of correlation functions obtained analytically (solid line) and numerically (dashed line) for τ = 20,
A = 100, B = 4.1. (a) C = 4, (b) C = 1 (indicated by black squares in Fig.1)
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Figure 4. Comparison of height of correlation function’s second peaks as a function the parameter C. Fixed parameters
are τ = 20, A = 100, B = 4.1. This picture corresponds to range of parameters indicated in Fig.1 by dashed vertical line.
Analytical curve is shown only in the range 0 < C < 4.1 where the solution (21-22) exists.
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peak located near τ = 20 as a function of the parameter τC. One can see that the ratio of peaks approaches
unity as C → 0.

As we can see from these results, the system exhibits oscillatory properties even below the Hopf bifurcation:
the correlation function has peaks approximately at multiples of the time delay τ .

3. SINGLE-GENE AUTO-REPRESSOR MODEL

The purpose of the very simple model considered in the previous section was to illustrate the methods of analyzing
the stochastic non-Markovian biochemical reactions. In this section we analyze a more complicated model which
is actually relevant for genetic regulation. Namely, we consider a single gene protein synthesis with negative
auto-regulation. This is a popular motif in genetic regulatory circuits, and its dynamics has been analyzed
within both deterministic and stochastic frameworks.1, 3 Here we generalize this system by taking into account
that transcription of auto-repressor protein takes a finite amount of time τ . We postulate that the chemical state
of the operator site Dt ∈ {Dt

0, D
t
1} determines the production of protein at time t + τ If the operator at time t

is unoccupied (Dt
0) then the protein may be produced at time t + τ with a certain probability A per unit time.

Otherwise if the operator is occupied (Dt
1), the production at time t + τ is blocked. The transitions between

operator states, which we denote as D0 (unoccupied) and D1 (occupied) occur with rates k1, k−1, are written as

Dt
0 + Xt k1−→ Dt

1, (29)

Dt
1

k−1−−→ Dt
0 + Xt. (30)

Protein production-degradation reactions can be written in the following form:

∅ AS(t)−−−−→ Xt+τ , (31)

Xt B−→ ∅. (32)

Here S(t) = 0 for unoccupied operator state Dt
0 and 1 for occupied state Dt

1. Thus, the reactions (31-32)
have negative feedback with (29-30) through the reaction rate in (31). It is important to note that the protein
production occurs with time lag τ can happen at time t + τ only if the operator is unoccupied at the time t.

Without going into the detailed description of this system, let us summarize the main results. It can be shown
that in the deterministic limit, the fixed point corresponding to the constant protein production, is globally stable
and does not exhibit Hopf bifurcation.

Nevertheless, stochastic fluctuation lead to persistent (albeit irregular) oscillations with characteristic period
close to two time delay times. In order to describe this process quantitatively, we introduce two probabilities,
P 0

n(t) and P 1
n(t), for the number of proteins to be equal to n at time t and for the state of the operator at time

t − τ to be D0 or D1, respectively. Then the master equations for the reactions (29-32) have the form

dP 0(n, t)
dt

= A(P 0(n − 1, t) − P 0(n, t)) + B((n + 1)P 0(n + 1, t) − nP 0(n, t)) −

− k1

∞∑

n=0

n[(P 0(n, t − τ) + P 1(n, t − τ)]P 0(n, t) + k−1P
1(n, t),

dP 1(n, t)
dt

= B((n + 1)P 1(n + 1, t) − nP 1(n, t)) +

+ k1

∞∑

n=0

n[(P 0(n, t − τ) + P 1(n, t − τ)]P 0(n, t) − k−1P
1(n, t). (33)

Here again we made the implicit assumption that the processes at times t and t − τ are weakly correlated, and
to the first approximation the two-point probability distribution function may be factorized, P (n, t; m, t − τ) ≈

Proc. of SPIE Vol. 5845     217



-150

-100

-50

 0

 50

 100

 150

 0  20  40  60  80  100

K
(T

)

T

(a)
analytical
numerical

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ea

k 
po

w
er

εA

(b)

analytical
numerical

Figure 5. (a) Comparison of correlation functions obtained analytically (solid line) and numerically (dashed line) for
A = 100, ε = 0.002. (b) Comparison of height of correlation function’s second peaks as a function the parameter εA.
Fixed parameters are τ = 50, B = 1.

P (n, t)P (m, t−τ). In order to calculate the correlation function we again use the method of generating functions.
Here we introduce two generating functions

Gi(s, t) =
∞∑

n=0

snP i
n(t), i = 1, 2 (34)

which correspond to the two operator states and their sum gives the full generating function G(s, t) = G0(s, t)+
G1(s, t). The equations for these functions read

∂G0

∂t
= (s − 1)

(
AG0 − B

∂G0

∂s

)
− k1〈n(t − τ)〉G0 + k−1G1,

∂G1

∂t
= −(s − 1)B

∂G1

∂s
+ k1〈n(t − τ)〉G0 − k−1G1. (35)

Finding the solutions of these equations near s = 1 is analogous to the previous Section, and we present here
only the final result. The correlation function reads

K(T ) =
(

A2(B + k−1)
B((B + k−1)(B + εA) + k1A)

+
A(B + εA − A)

(B + εA)2

)
σ(T )

1 − ζe−λτ
.

where σ, λ, and ζ are given by (22).

We performed direct Gillespie simulations of the stochastic model of single-gene auto-repressor. The compar-
ison between correlation functions derived analytically and numerically is shown in Figs.5(a,b). One can notice
that the structure of the correlation function is well described by the theory for small A, but the heights of
analytical and numerical peaks (Fig.5b) diverge quickly as εA grows. This is to be expected, because the validity
of our approximate theory is limited to small ε.

4. CONCLUSIONS

We have developed deterministic and stochastic models of the transcriptional regulation with delayed feedback
and have studied them both analytically and numerically. The stochastic problems with delayed kinetics are
generally difficult because of the non-Markovian nature of the dynamics. Such non-Markovian processes are
ubiquitous in transcriptional gene regulation, because transcription step is comprised of many elementary bind-
ing/unbinding reactions. However, the main features of such systems can be deduced within simplified models.
In this paper, we studied two such models for a single-gene transcriptional gene regulations. We were able to
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derive the analytical formulas for autocorrelation functions and compare it with those obtained numerically using
suitably modified direct Gillespie algorithm. We have shown that delayed transcription leads to characteristic
oscillations of the protein concentration even below the Hopf bifurcation of the deterministic analog of this
stochastic system.
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