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Radiative transport in the delta-P1 approximation:
accuracy of fluence rate and optical penetration depth
predictions in turbid semi-infinite media
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Abstract. Using the d-P1 approximation to the Boltzmann transport
equation we develop analytic solutions for the fluence rate produced
by planar (1-D) and Gaussian beam (2-D) irradiation of a homoge-
neous, turbid, semi-infinite medium. To assess the performance of
these solutions we compare the predictions for the fluence rate and
two metrics of the optical penetration depth with Monte Carlo simu-
lations. We provide results under both refractive-index matched and
mismatched conditions for optical properties where the ratio of re-
duced scattering to absorption lies in the range 0<(ms8/ma)<104. For
planar irradiation, the d-P1 approximation provides fluence rate pro-
files accurate to 616% for depths up to six transport mean free paths
(l* ) over the full range of optical properties. Metrics for optical pen-
etration depth are predicted with an accuracy of 64%. For Gaussian
irradiation using beam radii r0>3l* , the accuracy of the fluence rate
predictions is no worse than in the planar irradiation case. For smaller
beam radii, the predictions degrade significantly. Specifically for me-
dia with (ms8/ma)51 irradiated with a beam radius of r05l* , the error
in the fluence rate approaches 100%. Nevertheless, the accuracy of
the optical penetration depth predictions remains excellent for Gauss-
ian beam irradiation, and degrades to only 620% for r05l* . These
results show that for a given set of optical properties (ms8/ma), the
optical penetration depth decreases with a reduction in the beam di-
ameter. Graphs are provided to indicate the optical and geometrical
conditions under which one must replace the d-P1 results for planar
irradiation with those for Gaussian beam irradiation to maintain ac-
curate dosimetry predictions. © 2004 Society of Photo-Optical Instrumentation En-
gineers. [DOI: 10.1117/1.1695412]
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1 Introduction
Many biophotonics applications require knowledge of the
light distribution produced by illumination of a turbid tissue
with a collimated laser beam.1 Examples include photody-
namic therapy, photon migration spectroscopy, and optoa
coustic imaging. If one considers light propagating as a neu
tral particle, the Boltzmann transport equation provides an
exact description of radiative transport.2 However, the Boltz-
mann transport equation is an integrodifferential equation tha
often cannot be solved analytically. As an alternative, investi
gators have resorted to a variety of analytic and computationa
methods, including Monte Carlo simulations, the adding-
doubling method, and functional expansion methods.2–6 Each
of these methods possesses unique limitations. For examp
while Monte Carlo simulations provide solutions to the Bolt-
zmann transport equation that are exact within statistical un
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certainty, they require significant computational resources7–9

While, numerical finite difference or finite element solutio
for the Boltzmann transport equation10 may involve less com-
putational expenditure, they require spatial and angular
cretizations of the computational domain that lead to inac
racies that are often difficult to quantify. Finally function
expansion methods, such as the standard diffusion approx
tion ~SDA!, that express the angular distribution of the lig
field and the single-scattering-phase function as a trunc
series of spherical harmonics are typically accurate only un
a limiting set of conditions.2,6,11–13

Although the SDA provides only an approximate solutio
to the Boltzmann transport equation, its computational s
plicity has proven valuable for applications in optical diagno
tics and therapeutics. Unfortunately, the limitations of t
SDA are significant and confine its applicability to high
scattering media and to locations distal from both collima
sources and interfaces possessing significant mismatche
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Radiative transport in the delta-P1 approximation . . .
refractive index.11,14–16 Such conditions are not satisfied in
many biomedical laser applications and, over the past 15 y
hybrid Monte Carlo–diffusion methods17,18 as well as the
d-P1 , P3 , andd-P3 approximations have been proposed as
improved radiative transport models.1,6,19–25Our focus here is
the d-P1 ~or d -Eddington! model first introduced in 1976 by
Joseph et al.26 and first applied to problems in the biomedical
arena independently by Prahl,23,27 by Star,6,24 and Star et al.25

Many investigators in biomedical optics have studied the
accuracy of functional expansion methods. Groenhuis et a
provided one of the first comparative studies between Mont
Carlo and SDA predictions for the spatially resolved diffuse
reflectance produced by illumination of a turbid medium with
a finite diameter laser beam.11 Later, Flock et al. provided
another comparison between Monte Carlo simulations and th
SDA that focused primarily on optical dosimetry; specifically
the accuracy of fluence rate profiles and optical penetratio
depth predictions for planar irradiation of a turbid medium.28

More recently, Venugopalan et al. presented analytic solution
for radiative transport within thed-P1 approximation for in-
finite media illuminated with a finite spherical source.19 The
accuracy of these solutions was demonstrated by compariso
with experimental measurements made in phantoms over
broad range of optical properties. Spott and Svaasand re
viewed a number of formulations of the diffusion approxima-
tion (P1 , d-P1 , d-P3) for a semi-infinite medium illumi-
nated with a collimated light source, and compared fluence
rate and diffuse reflectance predictions with Monte Carlo
simulations for optical properties representative ofin vivo
conditions.16 Dickey et al.20,21 as well as Hull and Foster22

have studied the improvements in accuracy offered by theP3
approximation for predicting both fluence rate profiles and
spatially resolved diffuse reflectance. These studies have co
firmed that thed-P1 approach can provide significant im-
provements in radiative transport predictions relative to SDA
with minimal additional complexity.

While these investigations have provided some indication
of the improved accuracy provided by thed-P1 approxima-
tion relative to the SDA, none have offered a quantitative
assessment of its performance against a radiative transpo
benchmark such as Monte Carlo simulations over a wide
range of optical properties. Thus, it is difficult to establisha
priori the loss of accuracy that one suffers when using the
d-P1 approximation to determine fluence rate distributions or
optical penetration depths. Our objective is to provide a com
prehensive quantitative assessment of the accuracy of optic
dosimetry predictions provided by thed-P1 approximation
when a turbid semi-infinite medium is exposed to collimated
radiation. Here, we report on the variation of thed-P1 model
accuracy with tissue optical properties and diameter of the
incident laser beam.

Specifically, we determined the fluence rate profiles pre
dicted by thed-P1 approximation for semi-infinite media
when subjected to planar~1-D! or Gaussian beam~2-D! irra-
diation. For comparison, we performed Monte Carlo simula-
tions to provide ‘‘benchmark’’ solutions of the Boltzmann
transport equation for multiple sets of optical properties.
While we include plots of diffuse reflectanceRd versus
(ms8/ma) for planar irradiation, our focus is on the internal
light distribution as represented by the spatial variation of the
,
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-
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fluence rate. Since it is cumbersome to display the variation
fluence rate with depth for more than a few sets of opti
properties, we also examined predictions for the optical p
etration depth. Comparison of the optical penetration dep
predicted by thed-P1 approximation with those derived from
Monte Carlo simulations enables a continuous assessme
the d-P1 model accuracy over a broad range of optical pro
erties. These results are presented within a dimension
framework to enable rapid estimation of the light distributio
in a medium of known optical properties. Moreover, to pr
vide quantitative error assessment, we include plots of
difference between thed-P1 and Monte Carlo estimates. Th
variation of these errors with tissue optical properties and
radiation conditions provide much insight into the nature a
origin of the deficiencies inherent in thed-P1 approximation
as well as other functional expansion methods.

2 d -P1 Model Formulation and Monte Carlo
Computation
2.1 d-P1 Approximation of the Single-Scattering
Phase Function
The basis of thed-P1 approximation to radiative transport i
the d-P1 phase function as formulated by Joseph et al.26

pd2P1
~v̂•v̂8!5

1

4p
$2 f d @12~v̂•v̂8!#

1~12 f !@113g* ~v̂•v̂8!#%, ~1!

wherev̂ and v̂8 are unit vectors that represent the directi
of light propagation before and after scattering, respectiv
In Eq. ~1! f is the fraction of light scattered directly forward
which thed-P1 model treats as unscattered light. The rema
der of the light(12 f ) is diffusely scattered according to
standardP1 ~or Eddington! phase function with single scat
tering asymmetryg* . To determine appropriate values forf
andg* , one must choose a phase function to approximate
this paper, we choose to provide results for the Heny
Greenstein phase function, as it is known to provide a reas
able approximation for the optical scattering in biologic
tissues29:

pHG~v̂•v̂8!5
1

4p

12g1
2

@122g1~v̂•v̂8!1g1
2#3/2. ~2!

Recalling that for a spatially isotropic medium, thenth mo-
ment,gn , of the phase functionp(v̂•v̂8) is defined by

gn52pE
21

1

Pn~v̂•v̂8!p~v̂•v̂8!d~v̂•v̂8!, ~3!

wherePn is thenth Legendre polynomial, we determinef and
g* by requiring the first two moments of thed-P1 phase
function, g15 f 1(12 f )g* and g25 f , to match the corre-
sponding moments of the Henyey-Greenstein phase func
which are given bygn5g1

n . This yields the following expres-
sions for f andg* :

f 5g1
2 and g* 5g1 /~g111!. ~4!
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 633
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For simplicity, from this point forward we refer tog1 simply
as g and all d-P1 model results in this paper are shown for
g50.9 unless noted otherwise.

2.2 d-P1 Approximation of the Radiance
In a manner similar to the phase function, the radiance is als
separated into collimated and diffuse components:

L~r ,v̂ !5Lc~r ,v̂ !1Ld~r ,v̂ !, ~5!

where r is the position vector andv̂ is a unit vector repre-
senting the direction of light propagation.

For irradiation with a collimated laser beam normally in-
cident on the surface of a semi-infinite medium, the colli-
mated radiance takes the form

Lc~r ,v̂ !5
1

2p
E~r ,ẑ!d~12v̂• ẑ!, ~6!

where ẑ is the direction of the collimated light within the
medium, andE(r ,ẑ) is the complete spatial distribution of
collimated light provided by the source. While the lateral spa-
tial variation ofE(r ,ẑ) is given by the irradiance distribution
of the incident laser beamE0(x,y), its decay with depth
(z-dir! is governed by absorption and scattering within the
medium. Specifically, loss of collimated light arises from both
absorption and diffuse scattering. Noting that in thed-P1
phase function only(12 f ) of the incident light is diffusely
scattered, the decay of the collimated light with depth will
behave as a modified Beer-Lambert law:

E~r ,ẑ!5E0~x,y!~12Rs!exp$2@ma1ms~12 f !#z%

5E0~x,y!~12Rs!exp@2~ma1ms* !z#, ~7!

whereRs is the specular reflectance for unpolarized light,ma

is the absorption coefficient,ms is the scattering coefficient,
andms* [ms(12 f ) is a reduced scattering coefficient. For a
collimated beam traveling along thez axis that possesses ei-
ther a uniform or Gaussian irradiance profile we can work in
cylindrical (r ,z) rather than Cartesian(x,y,z) coordinates. In
this case, the collimated fluence rate is given by

wc~r !5E
4p

Lc~r ,v̂ !5E~r ,ẑ!5E0~r !~12Rs!exp~2m t* z!,

~8!

whereE0(r ) is the radial irradiance distribution of the inci-
dent laser beam andm t* [ma1ms* .

The diffuse radiance in Eq.~5! is approximated, as in the
SDA, by the sum of the first two terms in a Legendre poly-
nomial series expansion:

Ld~r ,v̂ !5
1

4p E
4p

Ld~r ,v̂ !dV

1
3

4p E
4p

Ld~r ,v̂8!~v̂8•v̂ !dV8

5
1

4p
wd~r !1

3

4p
j ~r !•v̂ ~9!
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wherewd(r ) is the diffuse fluence rate andj ~r ! is the radiant
flux.

The improved accuracy offered by thed-P1 approximation
stems from the addition of the Diracd function to both the
single scattering phase function and the radiance approx
tion. Thed function provides an additional degree of freedo
well suited to accommodate collimated sources and hig
forward-scattering media. Thus the addition of thed function
relieves substantially the degree of asymmetry that mus
provided by the first-order term in the Legendre expansio6

2.3 Governing Equations and Boundary Conditions
Substituting Eqs.~1!, ~6!, and~9! into the Boltzmann transpor
equation and performing balances in both the fluence rate
the radiant flux provides the governing equations in thed-P1
approximation for a semi-infinite medium19:

¹2wd~r !2meff
2 wd~r !523ms* m trE~r ,ẑ!

13g* ms* ¹E~r ,ẑ!• ẑ, ~10!

j ~r !52
1

3m tr
@¹wd~r !23g* ms* E~r ,ẑ!ẑ#, ~11!

where ms8[ms(12g) is the isotropic scattering coefficien
m tr[(ma1ms8) is the transport coefficient, andmeff

[(3mamtr)
1/2 is the effective attenuation coefficient.

Two boundary conditions are required to solve Eqs.~10!
and ~11!. At the free surface of the medium, we require co
servation of the diffuse flux component normal to the int
face, which yields

@wd~r !2Ah¹wd~r !• ẑ#uz50523Ahg* ms* E~r ,ẑ!uz50 ,

~12!
whereA5(11R2)/(12R1) andh52/3m tr . HereR1 andR2
are the first and second moments of the Fresnel reflec
coefficient for unpolarized light and are given by

R152E
0

1

r F~n!ndn and R253E
0

1

r F~n!n2dn,

~13!

where n5v̂• ẑ, with ẑ defined as the inward pointing un
vector normal to the surface. The details of this derivation
provided in Appendix A. Note that Eq.~12! represents an
exact formulation for conservation of energy at the bound
and avoids the approximations inherent in the use of extra
lated boundary conditions.30,31 The second boundary cond
tion requires the diffuse light field to vanish in regions f
away from the source. Thus,

wd~r !ur→`→0. ~14!

2.4 Solutions for Planar and Gaussian Beam
Irradiation
The total fluence rate is given by the sum of the collimat
and diffuse fluence rates:

w~r !5wc~r !1wd~r !. ~15!
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Fig. 1 Depiction of (a) planar and (b) Gaussian beam irradiation con-
ditions.
s

d.
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2.4.1 Collimated fluence rate
For either planar or Gaussian beam irradiation conditions, a
shown in Fig. 1, the collimated fluence rate within the tissue
is expressed in the form

wc~r ,z!5E0~r !~12Rs!exp~2m t* z!. ~16!

For planar irradiation,E0(r )5E0 while for Gaussian beam
irradiation,E0(r )5E0 exp(22r 2/r 0

2), wherer 0 is the Gauss-
ian beam radius, i.e., the radial location where the irradia
falls is 1/e2 of the maximum irradiance. Note thatE0

52P/pr 0
2, whereE0 denotes the peak irradiance andP is the

incident power of the Gaussian laser beam. For generality,
define a normalized collimated fluence ratew̄c as

w̄c5
wc~r ,z!

E0~r !~12Rs!
5exp~2m t* z!. ~17!

2.4.2 Diffuse fluence rate for planar irradiation
For planar illumination the diffuse fluence rate is determin
by solving Eq.~10! subject to the boundary conditions Eq
~12! and ~14! and yields

wd~z!5E0~12Rs!@a exp~2m t* z!1b exp~2meffz!#,

~18!

where

a5
3ms* ~m t* 1g* ma!

meff
2 2m t*

2 , ~19!

and

b5
2a~11Ahm t* !23Ahg* ms*

~11Ahmeff!
. ~20!

The solution procedure is detailed in Appendix B. In a man
analogous to the collimated fluence rate, we define a norm
ized diffuse fluence ratew̄d as

w̄d~z!5
wd~z!

E0~12Rs!
5a exp~2m t* z!1b exp~2meffz!.

~21!

2.4.3 Diffuse fluence rate for Gaussian beam
irradiation
For Gaussian beam irradiation, the diffuse fluence rate
given by

wd~r ,z!5E0~12Rs!E
0

`

$g exp~2m t* z!

1j exp@2~k21meff
2 !1/2z#%J0~kr !kdk, ~22!

where

g5
3ms* ~m t* 1g* ma!r 0

2 exp~2r 0
2k2/8!

4~k21meff
2 2m t*

2!
, ~23!

j5
23g* ms* r 0

2 exp~2r 0
2k2/8!24g@~Ah!211m t* #

4@~Ah!211~k21meff
2 !1/2#

,

~24!

and J0 is the zeroth-order Bessel function of the first kin
The solution procedure is detailed in Appendix C. The n
malized fluence rate for Gaussian beam irradiation is given
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 635
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w̄d~r ,z!5E
0

`

$g exp~2m t* z!

1j exp@2~k21meff
2 !1/2z#%J0~kr !kdk. ~25!

Numerical methods~MATLAB, MathWorks, Natick, Massa-
chusetts! were employed to compute the definite integral in
Eqs.~22! and ~25!.

2.5 Diffuse Reflectance for Planar Irradiation
The prediction of the diffuse reflectance provided by thed-P1
approximation is

Rd5
2 j ~z!• ẑ

E0~12Rs!
U

z50

5
1

3m trE0~12Rs!
F3g* ms* E0 exp~2mt* z!2

dwd~z!

dz GU
z50

5
w̄d~z!

2A U
z50

. ~26!

2.6 Limiting Cases
A unique feature of the solutions provided by thed-P1 ap-
proximation is thatwd→0 in the limit of vanishing scattering,
i.e., whenms8!ma . Thus in a medium where absorption is
dominant m t* →ma and the total fluence rate is governed
solely by the collimated contribution, i.e.,

lim
(ms8 /ma)→0

w~r ,z!5wc~r ,z!5E0~r !~12Rs!exp~2maz!.

~27!

Thus, unlike prevalent implementations of the SDA wherein
the collimated light source is replaced by a point source
placed at a depthz5(1/ms8) within the medium, thed-P1
approximation correctly recovers Beer’s law in the limit of no
scattering.

For media in which scattering is dominant(ms8@ma or
m t* @meff), the total fluence rate resulting from planar irradia-
tion reduces to

lim
(ms8 /ma)→`

w~z!5E0~12Rs!@~312A!exp~2meffz!

22 exp~2m t* z!#. ~28!

If we further consider this fluence rate in the far field~large
z), Eq. ~28! reduces to

lim
(ms8 /ma)→`

w~z!5E0~12Rs!~312A!exp~2meffz!

for large z. ~29!

Equation ~29! is equivalent to the fluence rate prediction
given by the SDA.13 Thus, in the limit of high scattering, and
away from boundaries and collimated sources, the solutio
provided by thed-P1 approximation properly reduces to that
given by the SDA.
636 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
2.7 Optical Penetration Depth
Apart from the fluence rate profiles and diffuse reflectan
results offered by thed-P1 approximation, we are also inter
ested in its predictions for the characteristic optical pene
tion depth ~OPD! in the tissue. In Fig. 2, we display two
variations of the OPD that we consider in this study. The fi
penetration depth metricD is simply the depth at which the
fluence rate falls to1/e of the incident fluence rate after ac
counting for losses due to specular reflection. The second p
etration depth metricD int is the depth at which all but1/e of
the power of the laser radiation has been absorbed after
counting for losses due to both specular and diffuse reflect
For generality, we normalize both these metrics relative t
characteristic length scale. We choose(1/meff) for this length
scale as it is the traditional definition for the optical penet
tion depth32 and is the length scale over which the homo
enous solution to Eq.~10! decays. Accordingly we define

Fig. 2 Graphical depiction of optical penetration depths (a) D and (b)
D int .



-

-

-

A

e
n

e

n

-

l

unts
an
t of
d-

on-

Radiative transport in the delta-P1 approximation . . .
D̄[meffD and D̄ int[meffD int . ~30!

2.8 Monte Carlo Simulations
We performed Monte Carlo simulations for planar and Gauss
ian beam irradiation of semi-infinite media under both refrac-
tive index matched and mismatched conditions. For this pur
pose we employed code derived from the Monte Carlo Multi-
Layer ~MCML ! package written by Wang et al.8,9 that
computes the 3-D fluence rate distribution and spatially re
solved diffuse reflectance corresponding to irradiation with a
laser beam possessing either uniform or Gaussian profiles.
Henyey-Greenstein phase function was utilized with a single
scattering asymmetry coefficient ofg50.9 unless stated oth-
erwise. This value ofg was chosen as it is representative of
many biological tissues.29 To approximate planar irradiation
conditions we used a beam with a uniform irradiance profile
with radius r 05200l * , where l * [(1/m tr) is the transport
mean free path. For Gaussian beam illumination, we setr 0 to
the desired1/e2 radius of the laser beam. To provide sufficient
spatial resolution a minimum of 100 grid points were con-
tained within one beam radius. Between107 and23109 pho-
tons were launched for each simulation and resulted in fluenc
rate estimates with relative standard deviation of less tha
0.1%.

3 Results and Discussion
3.1 Planar Illumination
Figures 3~a! and 3~b! provide normalized fluence rate profiles
predicted by thed-P1 approximation and Monte Carlo simu-
lations under planar illumination conditions for0.3
<(ms8/ma)<100 and relative refractive indicesn5(n2 /n1)
51.0 and 1.4, respectively. Note that the profiles are plotted
against a reduced depth that is normalized relative to th
transport mean free pathl * . These figures also provide the
error of thed-P1 predictions relative to the Monte Carlo es-
timates.

Overall, the performance of thed-P1 approximation is im-
pressive. The fluence rate is predicted with an error of<12%
over the full range of optical properties. In the far field, the
model performance is exceptional for large(ms8/ma), de-
grades slightly when scattering is comparable to absorptio
(ms8.ma), and improves again when absorption dominates
scattering(ms8/ma&0.3). This behavior is expected. For large
(ms8/ma) the prevalence of multiple scattering enables the dif-
fuse component of thed-P1 approximation to provide an ac-
curate description of the light field. However, when scattering
is still significant but(ms8/ma) is reduced, the decay of the
light field occurs on a spatial scale intermediate to that pre
dicted by diffusion, i.e.,exp(2meffz), and that predicted by the
total interaction coefficient, i.e.,exp(2mt*z). This results in an
error between thed-P1 model and the Monte Carlo estimates
that increases with increasing depth. This is seen most notab
for the case of(ms8/ma)51 for which the error is largest in
the far field. Finally, for highly absorbing media, the overall
accuracy of thed-P1 approximation improves again because
the contribution of collimated irradiance to the total light field
increases markedly and is well described by the modified
Beer-Lambert law of Eq.~7!.
y In the near field, the accuracy of thed-P1 approximation
degrades with increasing(ms8/ma). The origin of this lies in
the fact that increases in scattering result in increased amo
of light backscattered toward the surface. This leads to
increase in the angular asymmetry in the diffuse componen
the light field near the surface which is not accurately mo
eled by a radiance approximation that simply employs a c

Fig. 3 Normalized fluence rate w̄ versus reduced depth (z/l* ) as pre-
dicted by the d-P1 approximation (solid curves) and Monte Carlo
simulations (symbols) for planar illumination under refractive index (a)
matched (n51.0) and (b) mismatched (n51.4) conditions. Profiles
are shown for (ms8/ma)5100 (s), 10 (* ), 3 (L), 1 (3), and 0.3 (d) with
g50.9. Lower plots show the percentage error of the d-P1 predictions
relative to the Monte Carlo simulations using the same symbols as the
main plot.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 637
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Fig. 4 Normalized fluence rate w̄ versus reduced depth (z/l* ) as pre-
dicted by the d-P1 approximation (solid curves) and Monte Carlo
simulations (symbols) for planar illumination under refractive index (a)
matched (n51.0) and (b) mismatched (n51.4) conditions. Profiles
are shown for g50 (s), 0.3 (* ), 0.7 (3), and 0.9 (d) with (ms8/ma)
5100. Lower plots show the percentage error of the d-P1 predictions
relative to the Monte Carlo simulations using the same symbols as the
main plot.
s
.

y of
the
cat-
stant and the first-order Legendre polynomial. Thed-P1
model performs worse forn51.4because the refractive index
mismatch introduces internal reflection that further enhance
the angular asymmetry of the light field near the surface
638 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
However, when scattering is less prominent, the accurac
the fluence rate profiles is not as strongly dependent on
refractive index mismatch because there is less light backs
tered toward the surface.

Fig. 5 Normalized fluence rate w̄ versus reduced depth (z/l* ) as pre-
dicted by the d-P1 approximation (solid curves) and Monte Carlo
simulations (symbols) for planar illumination under refractive index (a)
matched (n51.0) and (b) mismatched (n51.4) conditions. Profiles
are shown for g50 (s), 0.3 (* ), 0.7 (3), and 0.9 (d) with (ms8/ma)
51. Lower plots show the percentage error of the d-P1 predictions
relative to the Monte Carlo simulations using the same symbols as the
main plot.
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Fig. 6 Diffuse reflectance Rd versus (ms8/ma) as predicted by the d-P1
approximation (solid curves) and MC simulations (d) for planar illu-
mination under refractive index (a) matched (n51.0) and (b) mis-
matched (n51.4) conditions. Lower plots show the percentage error
of the d-P1 predictions relative to the MC simulations.
on

rror
We also examined the influence of the single scattering
asymmetry coefficientg on thed-P1 model predictions for
fixed values of(ms8/ma). Figures 4~a! and 4~b! show the
variation of the normalized fluence rate profiles for0<g
<0.9 and(ms8/ma)5100 for n51 and 1.4, respectively. Fig-
ures 5~a! and 5~b! show these same results in media with
(ms8/ma)51. In the highly scattering case, the effect ofg is
seen most prominently in the near field due to its impact
the boundary condition used in thed-P1 approximation.
However, the effect is small and results in changes of the e

Fig. 7 Normalized optical penetration depths D̄[meffD (s) and D̄ int

[meffDint (d) versus (ms8/ma) as predicted by the d-P1 approximation
(solid curves) and MC simulations (symbols) for planar illumination
under refractive index (a) matched (n51.0) and (b) mismatched (n
51.4) conditions. Lower plots show the percentage error of the d-P1
predictions relative to the MC simulations.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 639
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Carp, Prahl, and Venugopalan
betweend-P1 and Monte Carlo~MC! estimates that do not
exceed 4% relative to results found forg50.9. Note that for
(ms8/ma)5100, the value ofg does not affect the predictions
in the far field as the SDA limit is applicable. As a result the
decay of the fluence rate profiles is governed byexp(2meffz)
and is independent ofg for a fixed(ms8/ma). By contrast, for
(ms8/ma)51, the variation ing affects the errors most promi-
nently in the far field. This occurs because there is minima
backscattering due to the higher absorption in the medium
leading to a fluence rate profile whose decay is dependent o
g even for a fixed(ms8/ma). However, we again see that the
effect of g is minimal as the variations in the error are less
than 7% even in the far field. Given that these error variations
are small and the fact that most soft biological tissues ar
strongly forward scattering we show all remaining results for
a value ofg50.9 ~Ref. 29!.

Figures 6~a! and 6~b! present the variation of the diffuse
reflectanceRd with (ms8/ma) for n51.0 and 1.4, respectively.
As in Fig. 3, there is good agreement for large(ms8/ma) in-
dependent of the refractive index mismatch. Under index
matched conditions, there is no internal reflection at the sur
face andRd is predicted with a relative error of68%. For a
refractive index mismatch corresponding to a tissue-air inter
face, the model predictions degrade as(ms8/ma) is reduced.
Specifically, relative errors exceed 15% for(ms8/ma),3.
However, as(ms8/ma)→0 the model is bound to recover its
accuracy since the diffuse component vanishes andRd→0 as
(ms8/ma)→0. Moreover, for(ms8/ma),0.3 the amount of dif-
fuse reflectance is negligible for all practical purposes. Thus
while the relative error inRd may be large, the absolute error
is vanishingly small.

To better characterize the variation in accuracy of thed-P1

approximation with(ms8/ma) we examine the OPDs that char-
acterize the fluence rate profiles. Figures 7~a! and 7~b! present

estimates for the normalized OPD metricsD̄[meffD and

D̄ int[meffDint as predicted by thed-P1 approximation and
MC predictions for1022<(ms8/ma)<104 under refractive in-
dex matched(n51.0) and mismatched(n51.4) conditions,
respectively.

Note that under conditions of dominant absorption, i.e.,

(ms8/ma)→0, meff→)ma . Thus both D̄ and D̄ int approach
(1/ma)(meff)5) as(ms8/ma)→0. This result is confirmed in
Figs. 7~a! and 7~b!. In the limit of high scattering, i.e.,
(ms8/ma)→`, inspection of Eq.~29! reveals that the value of

D̄ is dependent on the refractive index mismatch through th
boundary parameterA. Setting Eq.~29! equal toE0~12Rs!/e
and solving we find thatD̄511ln~312A!. Thus, for(ms8/ma)

→`, thed-P1 approximation predicts thatD̄→2.61 and 3.19
for n51.0 and 1.4, respectively. By contrast, a similar analy-

sis reveals thatD̄ int is not sensitive to the refractive index

mismatch andD̄ int→1 as (ms8/ma)→`. These asymptotic
limits predicted by thed-P1 model are confirmed by the re-
sults shown in Figs. 7~a! and 7~b!. Overall thed-P1 predic-
tions for the optical penetration depth are impressive and
match the MC estimates to within64% over the entire range
of (ms8/ma). The highest relative errors occur at(ms8/ma)
.1 as expected from the characteristics of the fluence rat
640 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
n

profiles shown in Fig. 3. Better accuracy is observed forD̄

(62%) than for D̄ int (64%). This is due to the stronge
impact that underestimation of the fluence rate near the

face has on the determination ofD̄ int .

3.2 Gaussian Beam Illumination
Figures 8~a! and 8~b! provide normalized fluence rate profile
along the beam centerline(r 50) as predicted by thed-P1

approximation and MC simulations at(ms8/ma)5100 for
beam radii r 05100l * , 30l * , 10l * , 3l * , and 1l * with n
51.0and 1.4, respectively. The errors of thed-P1 predictions
relative to the MC estimates are shown below the main pl
The fluence rate along the beam centerline forr 05100l * dif-
fers by less than60.5% from that produced by planar irra
diation. For bothn51.0 and 1.4, thed-P1 approximation
provides good accuracy relative to the MC predictions
beam radiir 0.3l * (617% in the near field,65% in the far
field!. However, the model accuracy degrades for sma
beam radii and reaches625% for r 05 l * . This is expected
given that the diffusion model breaks down when leng
scales comparable tol * are considered.

Figures 9~a! and 9~b! provide results for the more chal
lenging case of(ms8/ma)51. Due to the reduced scatterin
dispersion that occurs in media of higher absorption, one m
consider much smaller beam diameters before the fluence
profiles along the center differ noticeably from the planar
radiation case. Specifically, for(ms8/ma)51, the fluence rate
along the beam centerline forr 0530l * differs by less than
60.5% from that produced by planar irradiation. Forr 0
.3l * , errors in the fluence rate predictions provided by t
d-P1 model relative to the MC estimates are63% in the
near field and622% in the far field. However, forr 05 l * ,
the fluence rate is overestimated by nearly 100% in the
field. While a 100% error may appear striking, one shou
notice that this occurs once the fluence rate has alre
dropped by more than two orders of magnitude relative to
surface value. Thus, while the percentage error is large,
error with respect to the overall energy balance is small. T
large relative error for small beam radii is not surprising giv
the great difficulty that low-order functional expansion met
ods have in modeling the light field whenms8.ma . In the far
field, the accuracy of thed-P1 model is nearly independent o
the refractive index for the same reasons as those discuss
Sec. 3.1.

Figures 10~a! and 10~b! provide the normalized OPDD̄
along the beam centerline for Gaussian irradiation as p
dicted by thed-P1 model and MC simulations for1022

<(ms8/ma)<104 and beam radiir 051 – 100l * with n51.0

and 1.4, respectively. Corresponding results forD̄ int are pre-
sented similarly in Figs. 11~a! and 11~b!. The OPDs deter-
mined in the 1-D case are included for comparison as are
corresponding relative errors. The expected limiting behav
for (ms8/ma)→0 is identical to that in the planar irradiatio

case and thus bothD̄ and D̄ int converge to). For large
(ms8/ma) the decay of the fluence rate with depth for fini
beam illumination occurs on a spatial scale smaller th
exp(2meffz) because as the incident laser beam propagate
the medium, optical scattering results in significant lateral d



Radiative transport in the delta-P1 approximation . . .
Fig. 8 Normalized fluence rate along the beam centerline w̄(r50)
versus reduced depth (z/l* ) as predicted by the d-P1 approximation
(solid curves) and MC simulations (symbols) for Gaussian beam illu-
mination under refractive index (a) matched (n51) and (b) mis-
matched (n51.4) conditions. Profiles are shown for (ms8/ma)5100
with r05100l* (s), 30l* (* ), 10l* (L), 3l* (3), 1l* (d), and g
50.9. Lower plots show the percentage error of the d-P1 predictions
relative to the MC simulations.
-

he
est
persion from the high fluence region along the beam center

line to the periphery. ThusD̄, D̄ int→0 as(ms8/ma)→`. The

d-P1 predictions forD̄ andD̄ int track the MC estimates well,

with errors of less than64% in D̄ and620% in D̄ int for the
smallest beam radius studied(r 05 l * ). Once again, the larg-
est errors occur forms8.ma and D̄ is predicted more accu-

rately thanD̄ int . Both of these features are consistent with t
fluence rate profiles shown in Figs. 8 and 9 where the larg
errors are observed close to the surface(z,2l * ) and forms8
.ma .

Fig. 9 Normalized fluence rate along the beam centerline w̄(r50)
versus reduced depth (z/l* ) as predicted by the d-P1 approximation
(solid curves) and MC simulations (symbols) for Gaussian beam illu-
mination under refractive index (a) matched (n51.0) and (b) mis-
matched (n51.4) conditions. Profiles are shown for (ms8/ma)51 with
r0530l* (s), 10l* (L), 3l* (3), 1l* (d), and g50.9. Lower plots
show the percentage error of the d-P1 predictions relative to the MC
simulations.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 641



Carp, Prahl, and Venugopalan
Fig. 12 (a) Color contour plot of the normalized fluence rate w̄(r,z) as predicted by both the d-P1 approximation (solid contours and color) and MC
simulations (dashed contours) for Gaussian beam irradiation with r053l* in media with (ms8/ma)5100 for g50.9 under refractive index mis-
matched conditions (n51.4); and (b) relative error between d-P1 approximation and MC simulations.

Fig. 13 (a) Color contour plot of the normalized fluence rate w̄(r,z) as predicted by both the d-P1 approximation (solid contours and color) and MC
simulations (dashed contours) for Gaussian beam irradiation with r053l* in media with (ms8/ma)53 for g50.9 under refractive index mismatched
conditions (n51.4); and (b) relative error between d-P1 approximation and MC simulations.
642 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3



Radiative transport in the delta-P1 approximation . . .
Fig. 10 Normalized optical penetration depth D̄ versus (ms8/ma) as
predicted by the d-P1 approximation (solid curves) and MC simula-
tions (symbols) along the beam centerline for Gaussian beam illumi-
nation for g50.9 with r05100l* (s), 30l* (* ), 10l* (L), 3l* (3), and
1l* (d) under refractive index (a) matched (n51.0) and (b) mis-
matched (n51.4) conditions. The optical penetration depth for planar
illumination predicted by the d-P1 approximation is plotted as a
dashed curve. Lower plots shows the percentage error of the d-P1
predictions relative to the MC simulations.
n

-
MC

.

Figure 12~a! provides a color contour plot representing the
2-D fluence rate distribution for a Gaussian beam of radius
r 053l * with (ms8/ma)5100andn51.4. The solid isofluence
rate contours and the color map correspond to the predictio
provided by thed-P1 approximation while the dashed isoflu
ence rate contours represent predictions given by the
simulations. Figure 12~b! provides the 2-D distribution of the
relative errors between thed-P1 predictions and the MC
simulations. Thus, thed-P1 and MC contours shown in Fig

Fig. 11 Normalized optical penetration depth D̄ int versus (ms8/ma) as
predicted by the d-P1 approximation (solid curves) and MC simula-
tions (symbols) along the beam centerline for Gaussian illumination
for g50.9 with r05100l* (s), 30l* (* ), 10l* (L), 3l* (3), and 1l*
(d) under refractive index (a) matched (n51.0) and (b) mismatched
(n51.4) conditions. The optical penetration depth for planar illumi-
nation predicted by the d-P1 approximation is plotted as a dashed
line. Lower plots show the percentage error of the d-P1 predictions
relative to the MC simulations.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 643
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Carp, Prahl, and Venugopalan
12~a! provides some indication of the errors in penetration
depth that one makes when using thed-P1 approximation,
while Fig. 12~b! provides the errors in the actual optical do-
simetry.

The quality of thed-P1 predictions are excellent; the error
in the fluence rate relative to the MC estimates never exceed
20% and is less than 10% over the vast majority of the do
main. In the axial direction, the maximum errors occur in the
near field close to the boundary, while in the radial direction,
they occur along the beam centerline. This is expected be
cause it is at these locations where the spatial gradients an
angular asymmetry of the light field are greatest. Figures
13~a! and 13~b! provide plots under identical irradiation con-
ditions for a turbid medium with(ms8/ma)53. In Fig. 13~a!
we see similar errors in the location of the isofluence rate
contours when comparing thed-P1 approximation relative to
the MC predictions. However, in Fig. 13~b!, we observe a
different spatial pattern and magnitude of the fluence rate er
rors incurred when using thed-P1 approximation rather than
a MC estimate. As in Fig. 12~b!, the maximum errors in the
radial direction occur along the beam centerline. However, in
the axial direction, the maximum errors reside in the far field
and appear to be increasing with depth. This is similar to
the planar irradiation case and occurs because the spat
scale for the decay of the fluence rate with depth lies
betweenexp(2meffz) andexp(2mt*z); thereby leading to poor
predictions by thed-P1 approximation in the far field under
these conditions. It is important to note that examination of
d-P1 predictions at radial locations away from the centerline
reveals equivalent, if not better, accuracy in both fluence rat
profiles and OPD metrics. For example, for Gaussian beam

radii r 0.3l * , the errors in bothD̄ and D̄ int at the radial
location r 5r 0 are<5 and<8%, respectively, over the full
range of(ms8/ma). This result is consistent with the errors of
the full fluence rate distributions shown in Figs. 12 and 13.

3.3 Gaussian Beam versus Planar Irradiation
Treatment
As is evident from the results, the use of laser beams of sma
diameter significantly alters the fluence rate profile and optica
penetration depth. For example, Gaussian irradiation of a me
dium with (ms8/ma)5100 using a beam radius ofr 053l *
results in a fluence rate that is only;50% of that achieved
using planar illumination. Moreover, the reduction in both
fluence rate and OPD for decreasing beam diameters is mo
prominent in media with large(ms8/ma) because the scattering
enhances lateral dispersion of the collimated radiation~Figs.
8–13!. However, the Gaussian beam expressions are a b
more formidable than those for the case of planar irradiation
As a result, for simplicity and convenience, it may be useful
to determine the conditions under which the results of a plana
irradiation analysis provides sufficiently accurate predictions
along the centerline of a Gaussian beam. This may obviate th
need to use the more complex expressions corresponding
Gaussian beam irradiation in some cases.

Figure 14 provides these results in the form of a contou
plot showing the percentage difference between the fluenc
rate predictions given by thed-P1 approximation for Gauss-
ian beam irradiation along the centerline compared to plana
irradiation as a function of both normalized beam radius
644 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
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(r 0 / l * ) and optical properties(ms8/ma). Contours are pro-
vided for differences of 1, 3, 10, and 30% forn51.0 ~solid
contours! and 1.4~dashed contours!, respectively. These re-
sults indicate that as absorption becomes more dominant,
centerline fluence rate profiles produced by laser beams
smaller diameter can be adequately approximated using
planar irradiation predictions. This can also be seen in
OPD results shown earlier in Figs. 10 and 11. In these figu
we observed that for a given beam radius, there is a cer
value of (ms8/ma) above which the OPDs corresponding
Gaussian irradiation drop below the OPDs for planar irrad
tion. We note that this value of(ms8/ma) becomes lower as
smaller beam diameters are used. Note also that the inacc
cies incurred in using the planar irradiation results are alw
lower for the index-matched case. This is because the p
ence of a refractive index mismatch results in internal refl
tion at the tissue-air interface that enhances lateral disper
of the light field. This additional source of dispersion haste
the need for the use of a radiative transport model tha
geometrically faithful to the irradiation conditions.

4 Conclusion
We have shown that thed-P1 approximation to the Boltz-
mann transport equation provides remarkably accurate pre
tions of light distribution and energy deposition in homog
neous turbid semi-infinite media. Examination of th
functional expressions involved in thed-P1 approximation
reveals proper asymptotic behavior in the limits of absorptio
and scattering-dominant media. Comparison of the flue
rate and optical penetration depth predictions given by
d-P1 approximation with MC simulations demonstrate th
greater fidelity and accuracy of thed-P1 model relative to the
standard diffusion approximation.

Fig. 14 Contours for the error incurred in predicting fluence rate pro-
files along the centerline of a Gaussian laser beam of normalized
radius r0 /l* as a function of (ms8/ma) when using d-P1 predictions for
the planar irradiation case for n51.0 (dashed) and n51.4 (solid).
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Radiative transport in the delta-P1 approximation . . .
The availability of an analytic light transport model pro-
viding accurate optical dosimetry predictions is an invaluable
tool for the biomedical optics community. By providing our
results in terms of dimensionless quantities, they can be use
to rapidly estimate the fluence rate distributions and optica
penetration depths generated by a wide range of irradiatio
conditions and tissue optical properties. Thus beyond a great
theoretical understanding of the significant gains to be real
ized through the use of thed-P1 approximation over the stan-
dard diffusion approximation, these figures provide the bio-
medical optics community with charts that can be used fo
rapid lookup and estimation of light-transport related quanti-
ties.

5 Appendix A Derivation of Surface Boundary
Conditions in the d -P1 Approximation
The governing equations of thed-P1 approximation are~see
Sec. 2!:

¹2wd~r !23mam trwd~r !523ms* m trE~r ,ẑ!

13g* ms* ¹E~r ,ẑ!• ẑ ~31!

j ~r !52
1

3m tr
@¹wd~r !23g* ms* E~r ,ẑ!ẑ#, ~32!

where r is the position in the medium,ẑ is the unit vector
colinear with the direction of the collimated source,E(r ,ẑ) is
the irradiance distribution of the collimated source,ma is the
absorption coefficient,m tr[ma1ms8 is the transport coeffi-
cient with ms8 being the isotropic scattering coefficient,g* is
the single scattering asymmetry coefficient of theP1 portion
of the d-P1 phase function, andms* [ms(12 f ) is a reduced
scattering coefficient. Selection off and g* depends on the
selection of the phase function as described in Sec. 2.1.

Two boundary conditions are required to solve Eq.~31!.
Requiring conservation of the diffuse flux component norma
to the interface, we obtain6,23

E
v̂• ẑ>0

Ld~r ,v̂ !~v̂• ẑ!dv̂

5E
v̂• ẑ,0

Ld~r ,v̂ !r F~2v̂• ẑ!~2v̂• ẑ!dv̂,

~33!

where ẑ is the inward-pointing surface normal, and
r F(2v̂• ẑ) is the Fresnel reflection coefficient for unpolarized
light. The preceding condition can be described in words a
equating the amount of diffuse light that travels upward
(v̂• ẑ,0) and gets internally reflected at the interface with
the amount of diffuse light traveling downward(v̂• ẑ>0)
from the interface.

Substituting the approximation for the diffuse fluence rate
given by Eq. ~9! and using Eq.~32! to eliminate j ~r !, we
obtain the following form for the surface boundary condition
in the d-P1 approximation:

@wd~r !2Ah¹wd~r !• ẑ#uz50523Ahg* ms* E~r ,ẑ!uz50 ,
~34!
d

r

where A5(11R2)/(12R1) and h52/3m tr . This result is
identical to that provided by Eq.~12!. HereR1 andR2 are the
first and second moments of the Fresnel reflection coeffic
for unpolarized light, as given by Eq.~13!.

Note that in many implementations of the SDA,A is ap-
proximated instead byA'(11R1)/(12R1). While this is
strictly incorrect, it results in slightly better approximations
the fluence rate in the near field at the expense of provid
worse fluence rate approximations in the far field as well
violating conservation of energy when integrating the lig
field over the entire volume. The following cubic polynomi
provides an estimate forA5(11R2)/(12R1) that typically
differs from the exact value by less than 1%:23

A~n!520.13755n314.3390n224.90366n11.6896.

~35!

6 Appendix B Solution of the d -P1
Approximation for Planar Illumination
of a Semi-Infinite Medium
For planar illumination the source term is given by

E~z,v̂ !5E0~12Rs!exp~2m t* z!d~12v̂• ẑ!, ~36!

whereE0 is the irradiance,v̂ is the unit direction vector, and
ẑ is the inward pointing unit vector normal to the surface
the medium and is colinear with thez coordinate axis. Sub-
stituting Eq.~36! into Eq.~10!, we obtain the governing equa
tion for a planar geometry:

d2wd~z!

dz2 23mam trwd~z!

523ms* ~m t* 1g* ma!E0~12Rs!exp~2m t* z!.

~37!

The boundary conditions for the 1-D case reduce to

S wd2Ah
dwd~z!

dz D U
z50

523Ahg* ms* E0~12Rs!,

~38!

wd~z!uz→`→0. ~39!

The solution to Eq.~37! satisfying the Eqs.~38! and ~39! is

wd~z!5E0~12Rs!@a exp~2m t* z!1b exp~2meffz!#,

~40!
where

a5
3ms* ~m t* 1g* ma!

meff
2 2m t*

2 ~41!

and

b5
2a~11Ahm t* !23Ahg* ms*

~11Ahmeff!
. ~42!

These results are identical to that provided by Eqs.~18! to
~20!.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 645
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7 Appendix C Solution of the d -P1
Approximation for Gaussian Beam Illumination
of a Semi-Infinite Medium
The source term for a Gaussian beam profile is given by

E~r ,z!5E0~12Rs!exp~2m t* z!expS 2
2r 2

r 0
2 D , ~43!

wherer 0 is the1/e2 beam radius, andE052P/(pr 0
2), where

P is the power of the laser beam. The governing equation in
cylindrical coordinates has the form

1

r

]

]r S r
]wd~r ,z!

]r D1
]2wd~r ,z!

]z2 2meff
2 wd~r ,z!

523ms* ~m t* 1g* ms* !E~r ,z!, ~44!

subject to the boundary conditions:

S wd2Ah
]wd

]z D U
z50

523Ahg* ms* E~r ,z!uz50 , ~45!

]wd~r ,z!

]r U
r 50

50, ~46!

wd~r ,z!uz→`→0, ~47!

wd~r ,z!ur→`→0. ~48!

The solution procedure begins by assuming that both
wd(r ,z) and the right-hand side of Eq.~44! can be written as
Hankel transforms of two functionsf (k,z) and u(k,z), re-
spectively, i.e.,

E
0

`

f ~k,z!J0~kr !kdk5wd~r ,z! ~49!

and

E
0

`

u~k,z!J0~kr !kdk523ms* ~m t* 1g* ma!E0~12Rs!

3exp~2m t* z!expS 2
2r 2

r 0
2 D , ~50!

whereJ0 is the zeroth-order Bessel function of the first kind.
Substituting Eqs.~49! and ~50! into Eq. ~44! we obtain

1

r

]

]r F r
]

]r E0

`

f ~k,z!J0~kr !kdkG
1

]2

]z2 E
0

`

f ~k,z!J0~kr !kdk

2meff
2 E

0

`

f ~k,z!J0~kr !kdk5E
0

`

u~k,z!J0~kr !kdk.

~51!

We note that the first term of Eq.~51! appears in the Bessel’s
equation:
646 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
1

r

]

]r
r

]

]r
J0~kr !1k2J0~kr !50, ~52!

for which J0 is a solution. Thus Eq.~51! can be rewritten by
adding and subtractingk2J0(kr) on the left-hand side of Eq
~52!, which yields

E
0

`

~2k22meff
2 ! f ~k,z!J0~kr !kdk

1E
0

` ]2

]z2 J0~kr ! f ~k,z!kdk

5E
0

`

u~k,z!J0~kr !kdk. ~53!

Using a table of Hankel transforms,33 u(k,z) can be chosen
such that Eq.~50! is satisfied, namely,

]2

]z2 f ~k,z!2~k21meff
2 ! f ~k,z!

523ms* ~m t* 1g* ma!E0~12Rs!
r 0

2

4

3expS 2
r 0

2k2

8 Dexp~2m t* z!. ~54!

The boundary conditions in(k,z) space are obtained throug
Hankel transformation of Eqs.~45! to ~48!:

F ]

]z
f ~k,z!2

1

Ah
f ~k,z!GU

z50

5
3

4
g* ms* E0~12Rs!r 0

2

3expS 2
r 0

2k2

8 D , ~55!

and

f ~k,z!uz→`→0. ~56!

Solving the Eq.~54! for f (k,z) and substitution of the
results into Eq.~49! gives the following form forwd(r ,z):

wd~r ,z!5E0~12Rs!E
0

`

$g exp~2m t* z!

1j exp@2~k21meff
2 !1/2z#%J0~kr !kdk, ~57!

where

g5
3ms* ~m t* 1g* ma!r 0

2 exp~2r 0
2k2/8!

4~k21meff
2 2m t*

2!
~58!

and

j5
23g* ms* r 0

2 exp~2r 0
2k2/8!24g@~Ah!211m t* #

4@~Ah!211~k21meff
2 !1/2#

.

~59!

These results are identical to that provided by Eqs.~22! to
~24!.
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