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Abstract. Liver cancer is one of the most common malignant tumors worldwide. In order to enable the noninvasive
detection of small liver tumors in mice, we present a parallel iterative shrinkage (PIS) algorithm for dual-modality
tomography. It takes advantage of microcomputed tomography and multiview bioluminescence imaging, providing
anatomical structure and bioluminescence intensity information to reconstruct the size and location of tumors. By
incorporating prior knowledge of signal sparsity, we associate some mathematical strategies including specific
smooth convex approximation, an iterative shrinkage operator, and affine subspace with the PIS method,
which guarantees the accuracy, efficiency, and reliability for three-dimensional reconstruction. Then an in vivo
experiment on the bead-implanted mouse has been performed to validate the feasibility of this method. The findings
indicate that a tiny lesion less than 3 mm in diameter can be localized with a position bias no more than 1 mm; the
computational efficiency is one to three orders of magnitude faster than the existing algorithms; this approach is
robust to the different regularization parameters and the lp norms. Finally, we have applied this algorithm to another
in vivo experiment on an HCCLM3 orthotopic xenograft mouse model, which suggests the PIS method holds the
promise for practical applications of whole-body cancer detection. © 2012 Society of Photo-Optical Instrumentation Engineers

(SPIE). [DOI: 10.1117/1.JBO.17.12.126012]
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1 Introduction
Molecular imaging (MI), emerging as an indispensable research
tool, enhances the understanding of the physiological and patho-
logical changes in organisms. This noninvasive technology is
capable of visualizing the dynamic molecular and cellular pro-
cesses taking place in vivo over a period of time; while the con-
ventional route known as the gold standard is to perform a
biopsy before the tissue is observed at a certain time. Hence
the development of MI is of growing significance for early inter-
vention of disease, especially for cancer, which has a global
increase in incidence rate.1–3 There are different modalities of
MI, and each modality has its own advantages, mainly varying
in image resolution, detection depth, molecular sensitivity, avail-
able probes, and equipment cost.4 The common modalities—
including ultrasound imaging, computed tomography (CT),
and magnetic resonance imaging (MRI)—are generally good
at detecting a lesion larger than 1 cm in diameter,5 while
every cubic centimeter of the tumor contains approximately
0.5 to 3 billion cancer cells, which is basically too late for
early detection. Thus, new imaging methods and medical equip-
ment adapted to detect minute tumors still need to be developed.

The existing literature on multimodal fusion suggests new
opportunity.6–8 Hereby, dual-modality tomography (DMT)
has been utilized in this study, which provides multiview bio-
luminescence imaging (BLI) and microcomputed tomography
(μCT). BLI, one of the major modalities in optical molecular
imaging, reflects the functional information by collecting the
luminescent signal emitted from the internal tumor cells expres-
sing bioluminescent proteins. Together with the anatomical
structures generated by μCT, DMT enables localization of the
tumor region in three-dimensional (3-D), as well as performing
a quantitative analysis. By combining the two imaging modal-
ities, DMT therefore brings together the merits of good sensi-
tivity, high resolution, fast speed, and low instrumentation cost,
potentially making it possible for detecting liver cancer at an
early stage. Since the classical imaging techniques usually
depend on observing the physical properties of the tissues dur-
ing diagnosis, they could hardly reveal the cellular or molecular
changes associated with disease until when some obvious mor-
phological changes occur in the lesion areas. In contrast, DMT
provides higher detection sensitivity and more precise tumor
localization due to the following three reasons.

1. By using specific molecular probes, DMT can explore
the dynamic process of cancer development when the
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probes gradually bind to the targeted liver cancer cells,
which ensures more sensitive detection of the minis-
cule tumor.

2. DMT not only obtains the functional changes of
living organism, but also acquires the anatomical
structures such as the skeleton and organs, for the con-
venience of observing where tumors grow.

3. DMT could visualize the complex procedures of gene
expression and biological signal transmission in 3-D
images, enabling the study of the characteristics and
possible mechanisms of liver cancer.

For hybrid optical/μCT imaging, it is the 3-D reconstruction
of the dual-modality data that is challenging.9 Reconstruction
mainly refers to the procedure of creating the object in 3-D
from a set of planar images, and usually a precise reconstruction
result is the essential premise for the subsequent steps in image
processing. In particular, DMT reconstruction involves an ill-
posed inverse problem for the reason that the available informa-
tion of the surface photon density is more limited than the
unknown internal bioluminescence intensity, which is also
regarded as an underdetermined system of linear equations.
Moreover, the numerical computation of reconstruction could
be time-consuming due to the large scale of three-dimensional
dual-modality data, and it usually depends on selecting recon-
struction parameters.

Over the past few years, the related work aiming at solving
the above challenging problems has been extensively developed.
To alleviate the ill-posedness and ensure reconstruction reliabil-
ity, the multispectral algorithm was introduced to increase the
independent boundary measurements,10 while the permissible
source region approach was demonstrated to reduce the number
of the unknowns.11 To improve the reconstruction accuracy,
classical Newton’s methods with Tikhonov regularization were
widely used,12–14 while they performed computationally costly
to guarantee the convergence of the solution. To enhance the
reconstruction efficiency, the graph cuts based methods were
organized to conserve computation time due to the gradient-free
optimization.15,16 Although the reconstruction approaches
usually work well in some specific and highly controlled situa-
tions, no efforts need to be spared in investigating more general
cases.17

In this paper, a parallel iterative shrinkage algorithm has been
demonstrated for the dual-modality tomography, i.e., the hybrid
optical/μCT imaging. This method has implemented the detec-
tion and visualization of the mouse liver tumors at an early stage,
enabling lesion localization and its quantitative analysis. In
Sec. 2, the photon diffusion model will be described mathema-
tically, and then the principle and features of the PIS method will
be introduced in detail. In Sec. 3, the feasibility and limitations
of the PIS method for DMT will be thoroughly assessed, fol-
lowed by the 3-D reconstruction results of the two in vivo
experiments on mice. In Sec. 4, the conclusion and the future
plan for this work will be summarized.

2 Methods
In order to compute the 3-D distributions of the lesion regions in
mice, the following four steps were essentially taken to process
the raw data in multiple views acquired by the DMT system.
Figure 1 gives an overview of the whole procedure.

1. Preprocessing: To get the 3-D photon distribution on
the heterogeneous mouse surface, the raw data consist-
ing of the planar optical images and the μCT volume
data will be processed via segmentation, discretiza-
tion, space registration, and energy projection, respec-
tively.

2. Propagation model: The diffusion equation is utilized
to depict how the photons travel inside the mouse, and
the finite element method is adopted to establish the
linear relationship between the photon distribution
on the surface and the unknown internal biolumines-
cence distribution inside the body.

3. PIS reconstruction: Based on the prior knowledge of
signal sparsity and the optimal strategy of lp norm
minimization, the unknown bioluminescence intensity
could be solved, which represents the tumor location
and size.

4. 3-D visualization: To render the lesion regions inside
of the mouse clearly, it is necessary to conduct the pos-
terior tumor measurement and analysis, as well as to
estimate tumor growth.

2.1 Photon Diffusion Model

The photon diffusion model describes the propagation of light
through the mouse. In optical imaging, the luminescent source
in the near infrared range (NIR) has low energy, leading to a
diffusion-dominant transport process in a turbid medium such

Fig. 1 The method overview. First, pre-process the raw data with seg-
mentation, discretization, and registration; then, set up the photon dif-
fusion model and conduct the PIS reconstruction to localize the
luminescent source representing the tumor region; finally, visualize
the reconstruction results in 3-D and do the necessary analysis.
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as biological tissues. For this reason, the particle properties of
light are mainly taken into account, including scattering and
absorption; the wave nature such as polarization and interfer-
ence are neglected.18 Based on those premises, the light propa-
gation is modeled by a diffusion approximation with the Robin
boundary condition.

The diffusion equation is adapted to characterize the propa-
gation in biological tissues with the optical properties of high
scattering and low absorption. It is the first-order spherical har-
monics approximation for the radiative transfer equation,19

which can be written as Eq. (1) in the steady-state domain.

−∇ · ½DðrÞ∇ΦðrÞ� þ μaðrÞΦðrÞ ¼ SðrÞ r ∈ Ω; (1)

where D is the diffusion coefficient, and D ¼ 1
3½μaþð1−gÞμs�; μa is

the absorption coefficient; g is the anisotropy parameter; μs is
the scattering coefficient; r is a position vector; Φ is the photon
flux density; S is the signal source distribution;Ω is the region of
biological tissues.

The Robin boundary condition is employed due to the com-
pletely dark imaging environment of BLI20 without any external
photons, which is defined as

ΦðrÞ þ 2κðnÞDðrÞ½vðrÞ · ∇ΦðrÞ� ¼ 0 r ∈ ∂Ω; (2)

where κ is the boundary mismatch factor between the biological

tissues and air, and κðnÞ ¼ 1þð1.4399n−2þ0.7099n−1þ0.6681þ0.636nÞ
1−ð1.4399n−2þ0.7099n−1þ0.6681þ0.636nÞ; n

is the refractive index of the biological tissues; v is the unit out-
ward normal on ∂Ω; ∂Ω is the boundary of the biological tissues.

According to the Robin boundary condition, the theoretical
outgoing photon density on the surface of the mouse is calcu-
lated by

T ¼ −DðrÞ½vðrÞ · ∇ΦðrÞ� ¼ ΦðrÞ
2κðnÞ r ∈ ∂Ω; (3)

where T is the theoretical value of the outgoing photon density
on the surface.

After applying the finite element method based on the varia-
tion principle to Eqs. (1) and (2), the linear relationship can be
built between the measured outgoing photon density on the sur-
face and the bioluminescence intensity inside the body via repla-
cing the variables with the matrix-vector forms:20

MS ¼ Γ; (4)

whereM is the system matrix, standing for the optical properties
of the biological tissues; Γ is the measured outgoing photon den-
sity on the surface.

In Eq. (4), the photon density on surface Γ can be calculated
from the multiview optical images captured by a cooled charge-
coupled device. Each element of the system matrix M can be
gained by Refs. 19 and 21:

mij ¼
�Z

Ωi

DðrÞ∇φiðrÞ∇φjðrÞdrþ
Z
Ωi

μaðrÞφiðrÞφjðrÞdr

þ
Z
∂Ωi

φiðrÞφjðrÞ∕2κðnÞdr
�
−1 Z

Ωi

φiðrÞφjðrÞdr;

(5)

where φ is the basis function in the finite element method.

Hence the procedure to solve the diffusion equation has been
simplified into the form of a linear function, which can improve
computational efficiency. It is peculiarly worth mentioning that
Eq. (4) is an underdetermined system of linear equations with
fewer equations than unknowns. This is because the available
information of the surface photon density is far more limited
than the unknown internal bioluminescence intensity, conse-
quently causing difficulties in the following 3-D reconstruction.

2.2 Prior Knowledge and Optimal Strategy

The DMT reconstruction is involved in solving an undetermined
system of linear equations, which is mathematically considered
to be an ill-posed problem on account of its infinite solutions. In
order to reduce the ill-posedness, a priori knowledge known as a
sparse constraint is introduced, by which an approximation
close to the exact solution can be eventually found. Since this
paper emphasizes the detection of early-stage tumors, there
usually turns out to be sparse signals in the biological organ-
ism,22 referring to a distribution with a large number of zeros
except for minimal support of the solution space that denotes
the lesion areas. Thus the methods for sparse signals recovery
(SSR) offer valuable alternatives to DMT reconstruction.

The essence of SSR is to utilize the limited linear observa-
tions via a normal optimal strategy. Since the samples required
by SSR could be less than the quantity needed by the Nyquist
sampling theorem, the underdetermined system of equations can
be solved by finding the best basis that stands for the biolumi-
nescence intensity. A number of iterative algorithms,23–27 which
have been developed to retrieve sparse signals include the Born
iterative method, Truncate-Newton, Levenberg-Marquardt
approach, etc.

Furthermore, a regularization strategy was also exploited for
DMT reconstruction. Generally, the simplest solution to Eq. (4)
is in the form of the least square expressed as Eq. (6), but it tends
to amplify the errors generated by noise. In order to make the
reconstruction more practical, a constraint condition known as a
regularization term is added. For instance, one of the most com-
monly used methods named Tikhonov regularization considers
the l2 norms constraint for the unknown internal source,28 the
form of which is written in Eq. (7). Although this method
can optimize the results, it still leads to the over-smooth pro-
blem, which blurs the reconstructed source boundary and misses
part of the source information.

argmin
S

�
1

2
kMS − Γk22

�
(6)

argmin
S

�
1

2
kMS − Γk22 þ λkSk22

�
; (7)

where λ is the regularization parameter.
To overcome the above difficulties, we incorporated the

sparse signals as the prior knowledge and used a more general-
ized form for the constraint condition, the lp norm regularization
term, shown in Eq. (8). So far, the optimal object function for
retrieving the DMT signals has been obtained, which is a linear
inverse problem formulated as Eq. (9). The internal source dis-
tribution representing the tumor region can be ultimately deter-
mined by solving the object function via optimal minimization
in the next section.
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argmin
S

�
1

2
kMS − Γk22 þ λkSkpp

�
(8)

fðSÞ ¼ 1

2
kMS − Γk22 þ λkSkpp; (9)

where k · k22 stands for the l2 norm; k · kpp stands for the lp norm;
p is a real number in the range from one to two.

2.3 Parallel Iterative Shrinkage Algorithm

The iterative shrinkage strategy is a newly emerged numerical
computational method. It surpasses the traditional iteration opti-
mization such as the steepest-descent, the conjugate gradient
and the interior-point29–31 in terms of temporal and spatial effi-
ciency particularly when solving the multidimension problem.
Because of those strengths, the iterative shrinkage methods have
recently been applied to image denoising and the inverse
problem.32

The PIS approach, belonging to the iterative shrinkage meth-
ods,33 intrinsically converts a complex process of optimizing the
multidimension function into a set of parallel one-dimension
optimizations with respect to each variable. In other words,
the full set of unknown variables is iteratively optimized at the
same time instead of being updated sequentially, by which the
computational complexity can thereby be simplified.

To further illustrate how such an algorithm fits into DMT
reconstruction, we mathematically derived the PIS method
using the following four steps.

Step 1: To simplify the object function from multiple dimensions
to one dimension with the iterative shrinkage strategy. Assum-
ing that within an individual iteration of optimization, we have
the k’th estimate for the internal source distribution sk. To cal-
culate the next estimate skþ1, α stands for the j’th element
where skþ1ðjÞ is updated by Eq. (10), supposing all of the
other elements are fixed. Afterward, the object function origin-
ally has x dimensions, then Eq. (9) will be converted into the
form of the dimension referred to in Eq. (11).

α ¼ argmin
α

1

2
kMsk − Γ −mjskðjÞ þmjαk22 þ λkαkpp

(10)

gðαÞ ¼ 1

2
kMsk − Γ −mj½skðjÞ − α�k2

2
þ λkαkpp; (11)

where k is a natural number; j is a natural number; sk is the kth
estimate of the internal source distribution S; skðjÞ is the jth
element in sk; α stands for skþ1ðjÞ; mj is the jth column
element in the system matrix M.

Step 2: To achieve the analytical solution by introducing a smooth
convex approximation. Since the analytical solution to the
object function does not exist by directly taking the derivative
of Eq. (11), the regularization term can be replaced with the
smooth convex approximation θðwÞ, a differentiable function
defined in Eq. (12). It fits the regularization term appropriately
while the two variables, w and p, remain as the relationship
shown in Fig. 2. Then the object function can be modified
as Eq. (13). To minimize it, take the first derivative of the equa-
tion with respect to α and set it to zero, yielding Eq. (14).
Rewrite it as Eq. (15), which is a quadratic equation, so
that α can therefore be analytically solved.

θðwÞ ¼ 1

2
½kαk11 − w lnð1þ kαk11∕wÞ� (12)

gðαÞ ¼ 1

2
kMsk − Γ −mj½skðjÞ − α�k2

2
þ λθðwÞ (13)

mT
j ½Msk − Γ −mjskðjÞ þmjα� þ λ

α

wþ α
¼ 0 (14)

�
α2 þ ðβ þ wþ λÞαþ wβ ¼ 0

β ¼ mT
j ðMsk − ΓÞ − skðjÞ ; (15)

where θðwÞ is a smooth convex approximation function; w is a
positive real number.

Step 3: To accelerate the reconstruction using an iterative shrink-
age operator, which can be computed in parallel. The expres-
sion of the specific iterative shrinkage operator HkðjÞ is given
by Eq. (16). Apparently its calculation will be activated once
the values of λ and w are set. Since the elements of HkðjÞ are
independent of each other, they can be simultaneously
obtained with the help of Eq. (17), thus enhancing reconstruc-
tion efficiency.(
HkðjÞ ¼ ðVj−w−UjÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjVjj−w−UjÞ2þ4wjVjj

p
2signðVjÞ

Vj ¼ mT
j ðΓ −MskÞ∕kmjk2 þ skðjÞ; Uj ¼ λ∕kmjk2

(16)

8<
:

Hk ¼ ðV−w−UÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjVj−w−UÞ2þ4wjVj

p
2signðVÞ

V ¼ diag−1ðMTMÞMTðΓ −MskÞ þ sk
U ¼ λdiag−1ðMTMÞ

; (17)

where “sign” stands for the sign function; “diag” stands for
extracting the diagonal elements of a matrix.

Step 4: To compute the next iterative estimate via an affine sub-
space optimization. For any iterative optimal strategy, it is
essentially required to select the optimal direction dk and
the step length σk when searching for the next iterative esti-
mate skþ1, because they can usually ensure a more accurate
result. Instead of using the classical linear search, the affine
subspace Dk defined in Eq. (18) is employed here to aid

Fig. 2 The relationship curve between w and p, providing several pairs
of their coordinates.
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the decision of the next direction for optimization. It is com-
promised of the previous directions as well as being based on
the iterative shrinkage operator mentioned in the former step.
In addition, the step length of the next iteration can be acquired
by Eq. (19), consequently enabling the computation of skþ1 in
Eq. (20). The iterative optimization will stop when the ratio
R ¼ gðskþ1Þ∕gðskÞ < 0.1 is satisfied, and DMT reconstruction
results denoting the internal source distribution S will be
ultimately achieved

8<
:

Dk ¼ fdikgki¼1

d1k ¼ Hk − sk
dik ¼ sk−iþ1 − sk−i ði ¼ 2; 3; : : : ; kÞ

(18)

σk ¼ argmin
σ

gðsk þ σDkÞ (19)

skþ1 ¼ sk þ σkDk; (20)

where D is the affine subspace; d is the direction of an itera-
tion; i is a positive integer, ranging from two to k; σ is the step
length of an iteration.

In summary, the PIS algorithm for the DMT reconstruction
can be concisely demonstrated by the flowchart in Fig. 3.

3 Results and Discussion
To validate the feasibility of the PIS method for the DMT recon-
struction, an in vivo experiment on the nude mouse that was
implanted with a plastic luminescent bead in the liver has been
conducted using the hybrid optical/μCT imaging system devel-
opedbyourgroup.34Thenwehaveapplied theproposedapproach
to another in vivo experiment on an HCCLM3 orthotopic xeno-
graft mousemodel. Note that HCCLM3 stands for a human hepa-
tocellular carcinoma cell line with high metastatic potential.

3.1 Dual-Modality Imaging System Setup

The DMT system, surrounded in a completely dark environ-
ment, provides two modalities: multiview BLT and μCT. The
schematic illustration of the system is given by Fig. 4, which
is mainly equipped with a cooled CCD, a set of optical lenses,
an x-ray generator, an x-ray detector, and a rotating stage (the
manufacturers and models are listed in Table 1). This system
enables noninvasive in vivo imaging for small animals, making
it possible to observe the dynamic biological behavior in real

Fig. 3 The flowchart of the PIS algorithm for the DMT reconstruction.

Fig. 4 The schematic illustration of the DMT system. It provides multi-
view BLI and μCT, the major devices of which are illustrated in Table 1.

Table 1 The manufacturers and models for the components of the
DMT system.

Device Manufacturer and model

Cooled CCD Princeton instruments, PIXIS: 1024

CCD lenses Nikon Nikkor, 50 mm f1.2

X-ray generator Oxford Instruments, 90 kV UltraBright
Micro-focus Source

X-ray detector Hamamatsu Photonics, C7943CA-02 Flat
Panel Sensor

Rotating stage Beijing Zolix Instruments, RAK
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time. However, if detecting the same activity taking place in the
body by the conventional method, a group of experimental mice
have to be sacrificed for the inevitable pathological section
analysis. Besides reducing the quantity of the experimental
animals, this new hybrid imaging method can also result in
more reliable datasets since the whole dynamic procedure
can be achieved on the same mouse, thus avoiding individual
differences.

3.2 Data Acquisition and Image Preprocessing

Prior to the experiment, the dual-modality raw data was
collected, respectively. The acquisition time for the entire pro-
cedure was within 10 min, which could be tolerated by the mice.
As delineated in Fig. 4, the mouse was firstly placed on the auto-
matic rotating stage. Afterward, the photons emitted from the
mouse body were captured in four different views by the cooled
CCD. The four planar optical images are displayed in Fig. 5. At
last, the cone-beam μCT projection data with 360-deg views was
scanned using the x-ray generator and the detector.

After achieving the raw data, some necessary preprocessing
operations were carried out to make the data suitable for poster-
ior reconstruction.

(1) μCT Reconstruction: The cone-beam μCT projection
data was reconstructed by the GPU accelerated

Feldkamp-Davis-Kress (FDK) algorithm35 to yield
the mouse volume data in 3-D

(2) Segmentation: To build the heterogeneous mouse
model delineated in Fig. 6(a), the major organs and
tissues were segmented including the heart, lungs,
liver, muscle, and skeleton

(3) Discretization: The mouse body was discretized into
a volumetric mesh containing 4,560 modes and
23,752 tetrahedral elements

(4) Registration: To portray the photon distribution on
the body surface depicted in Fig. 6(b), the optical
images were mapped onto the surface of the volu-
metric mesh in terms of space and energy.

3.3 In Vivo Experiment on the Bead-Implanted
Mouse

The experimental nude mouse’s liver in this section was surgi-
cally implanted with the luminescent bead. Anterior to imaging,
the mouse was injected through the caudal tail vein with 0.3-ml

Fig. 5 Themulti-view BLI data of the experimental nudemouse with an implanted luminescent bead. Four pictures taken at 0 deg, 90 deg, 180 deg, and
270 deg by the cooled CCD.

Fig. 6 The heterogeneous volume data and the surface photon distri-
bution of the experimental nude mouse with an implanted lumines-
cent bead. (a) The volume data of the heterogeneous mouse model
after the segmentation of the major organs and tissues including the
heart, lungs, liver, muscle, and skeleton; (b) the surface photon distri-
bution of the mouse body after registration, where the photons are
assembled as a bright spot on the bottom left. Compared with (a), it
could be estimated that the spot is close to or located exactly at
the liver region.

Fig. 7 Three slices of the μCT data, where the yellow square marks the
location of the luminescent bead: (a) the coronal view; (b) the sagittal
view; (c) the transversal view.

Table 2 The optical properties of the mouse organs and tissues
(mm−1), where the first row represents the absorption coefficient,
while the second row denotes the scattering coefficient.

Lungs Heart Liver Muscle Skeleton

μa 0.022 0.071 0.128 0.075 0.032

D 0.2896 0.1403 0.4307 0.1480 0.5394

Journal of Biomedical Optics 126012-6 December 2012 • Vol. 17(12)

Wu et al.: Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid . . .



Fenestra vascular contrast agent to enhance the μCT images,
followed by 0.3 ml of anesthetic at a 0.15 g∕ml concentration
via intraperitoneal injection. When the anesthetic set in, an
irregular-shaped bead the size of 2.10 × 2.70 × 2.40 mm was
embedded into the mouse. This luminescent source was suited
for stimulating the liver tumor inside the living organism,
because its wavelength ranged from 650 to 700 nm, which is
identical to that of the light produced by firefly luciferase. It
is worth mentioning that this study could examine the recon-
struction accuracy of the PIS method, because the luminescent
bead was wrapped in a plastic material, which could be easily
detected by μCT.

After acquiring the raw data using the DMT system, the μCT
data was reconstructed into the volume data, three slices of
which are shown in Fig. 7, where the square marks the location
of the luminescent bead at the coordinate (24.6, 20.0, 7.2). After
combining the optical data displayed in Fig. 5, the heteroge-
neous volume and the surface photon distribution shown in
Fig. 6 could be therefore achieved. To distinguish the different
optical properties of the organs and tissues, the adding-doubling
technique36 was utilized to improve the heterogeneous mouse
model, where the organs and tissues were assigned the corre-
sponding coefficients of absorption and scattering in Table 2.
Finally, the reconstruction based on the PIS method was per-
formed to localize where the luminescent bead was inside the
mouse body. The reconstruction results will be evaluated in
more detail in the next section.

3.4 Evaluation of Reconstruction Accuracy

To validate the reconstruction accuracy of the PIS approach,
comparisons were made between the reconstructed internal

source and the plastic luminescent bead. Figure 8 gives the
results in the case when λ ¼ 10−3 and p ¼ 1.1, demonstrating
the size of the reconstructed source and its location to the organs
and tissues inside the mouse body.

It can be seen from Fig. 8(a) that the reconstructed source is
located in the liver region, and the coordinate of the source cen-
ter is (24.0, 19.8, 7.4). To display the entire source more clearly,
the liver was concealed in Fig. 8(b), enabling the measurement
of the source size, which was 2.41 × 2.31 × 2.93 mm. In addi-
tion, Fig. 8(c) shows the sectional view of the μCT slice where
the center of the luminescent bead was located, which was
visually in good agreement with the center of the reconstructed
source shown in Fig. 8(d). A further computation confirmed that
the position bias between the two centers was approxi-
mately 0.66 mm.

The above results suggest the lesion region was less than
3 mm in diameter but could be detected by means of the PIS
method, with a position bias no more than 1 mm.

3.5 Evaluation of Reconstruction Efficiency

To examine the reconstruction efficiency of the PIS algorithm,
take the same case as an example. Figure 8(e) describes the con-
vergence speed of the iterative reconstruction with the same
parameters mentioned in the former section. It is noted that
the iterative curves still resemble each other even when the para-
meters are changed. During the total 40 iterations, the value of
the optimal object function decreased substantially, moving
towards an ultimate convergence. The whole procedure of
this reconstruction cost 9.82 s. In particular, the value tended
to be zero as early as the 20th iteration, and then it became
more stable.

Moreover, the classical Newton’s algorithm and the general-
ized graph cut (GGC) approach were also applied to reconstruct
the same dataset.37 The comparison of the reconstruction effi-
ciency was made based on the data in Table 3. It shows the
time consumed by the two different methods as well as the pro-
posed one for reconstructing the four groups of datasets whose
sizes are determined by the density of the discrete volu-
metric mesh.

The results reveal that: 1. When reconstructing the same
dataset, the GGC approach works more efficiently than New-
ton’s algorithm, but is less efficient than the proposed PIS
method; 2. When the size of the dataset increases, the PIS
method becomes more computationally competitive; 3. all of
the datasets are discretized based on the whole mouse torso,
which means the proposed method is not only time efficient,
but also has the potential for practical applications.

Fig. 8 The reconstruction results using the PIS method in the case when
λ ¼ 10−3 and p ¼ 1.1: (a) the front view in 3-D; (b) the side view in 3-D
while setting the liver region as invisible; (c) the coronal view of the μCT
slice where the center of the luminescent bead was located; (d) the sec-
tional view of the DMT reconstruction results where the reconstructed
internal source was located; (e) the corresponding iterative curve,
reflecting the convergence speed of the reconstruction.

Table 3 The comparison of the reconstruction efficiency based on
different methods. The size of the volumetric mesh equals the number
of nodes multiplied by the number of tetrahedral elements.

No Volumetric mesh size Newton’s GGC PIS

1 2;125 × 7;761 817.86 s 39.88 s 3.34 s

2 3;048 × 15;890 2,294.66 s 68.58 s 4.81 s

3 3;714 × 17;218 4,931.42 s 146.17 s 7.47 s

4 4;560 × 23;752 7,891.52 s 345.74 s 9.82 s
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Fig. 9 The comparisons of the reconstruction results in sectional views with different regularization parameters λ: (a) the coronal view of the μCT slice
where the center of the luminescent bead was located; (b) to (j) the sectional views of the reconstruction results in the cases when λ ¼ 10−3, 10−5, 10−7,
10−9, 10−11, 10−13, 10−15, 10−17, 10−19, respectively, while maintaining the same p value, p ¼ 1.1.

Fig. 10 The comparisons of the reconstruction results in sectional views with a different lp norm: (a) the coronal view of the μCT slice where the center
of the luminescent bead was located; (b) to (j) the sectional views of the reconstruction results in cases when p ¼ 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9, respectively, while maintaining the same λ value, λ ¼ 10−5.
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3.6 Evaluation of Reconstruction Reliability

To verify the reconstruction reliability of the PIS method, we
have conducted 180 reconstructions for testing its tolerance
with different parameters. Generally speaking, the reconstruc-
tion accuracy is considerably affected by the regularization
parameter λ and the lp norm, where slight changes may dra-
matically have an impact on the results. In this section, the reg-
ularization parameter λ ¼ 10−n was selected with different
orders of magnitude, with n ranging from 1 to 20; as for
the lp norm, p was chosen to be between 1.1 and 1.9. The sec-
tional views of the reconstruction results are partly delineated
in Figs. 9 and 10.

Comparing the locations between the luminescent bead in
Fig. 9(a) and the reconstructed bright spots in Fig. 9(b) to
9(j), we found that they were visually in good agreement by
virtue of the auxiliary grid. Further computation revealed
that the position bias in each reconstruction was less than
1 mm, and more details have been explored about the position
bias. 1. It reaches the lowest peak when λ ¼ 10−3; 2. it main-
tains a smaller value when λ < 10−3, ensuring satisfying
results; 3. it rises substantially when λ > 10−3, meaning unde-
sirable options. Therefore the proposed algorithm is robust to a
wide variety of parameters, whereas the regularization para-
meter λ could be no more than 10−3, and the norm p has a
more flexible selection.

3.7 In Vivo Experiment on HCCLM3 Orthotopic
Xenograft Mouse Model

Unlike the experimental mouse introduced in Sec. 3.3, the nude
mouse in this section was an orthotopic xenograft model inocu-
lated with HCCLM3 cell lines. Those fLuc-expressing
HCCLM3 cell lines are suitable for BLI.

Before imaging, both the anesthetic and luciferine were suc-
cessively injected into the mouse, where the photons were
emitted during the oxidation reaction on the condition that luci-
ferase met luciferine. The amount of the outgoing photons col-
lected by the DMT system is linearly correlated to the quantity
of the liver cancer cells inside the mouse, because the chemical
reaction will occur only when the cancer cells are alive, and only
one photon will be sent out every time when the reaction works.

During imaging, the optical images in the four views were
attained by the BLI modality, and the volume data at
360 deg was scanned by the μCT modality. The accumulated
acquisition time was about 7 min in total, in which each optical

image took 10 s of the integral time while the μCT scanning cost
60 s. The raw optical pictures in Fig. 11 describe the photon
distribution in two-dimensional (2-D) of the whole mouse,
where two bright spots could be caught from 0 deg and
90 deg, but not from obviously visible luminescence at
180 deg and 270 deg. After imaging, the mouse was subjected
to laparotomy and was analyzed using H&E staining, and
lesions could be observed in the liver region.

Fig. 11 The multi-view BLI data of the HCCLM3 orthotopic xenograft mouse model. Four pictures take at 0 deg, 90 deg, 180 deg, and 270 deg via the
cooled CCD.

Fig. 12 The heterogeneous volume data and the surface photon distri-
bution of the HCCLM3 orthotopic xenograft mouse model: (a) the
volume data of the heterogeneous mouse model after the segmentation
of the major organs and tissues including the heart, lungs, liver, muscle,
and skeleton; (b) the surface photon distribution of the mouse body after
registration.

Fig. 13 The reconstruction results of the HCCLM3 orthotopic xenograft
mouse model using the PIS method in case when λ ¼ 10−3 and p ¼ 1.1,
including a front view and two side views.
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Prior to reconstruction, the dual-modality data was prepro-
cessed. After segmentation, the μCT volume of the whole
mouse is shown in Fig. 12(a), which clearly depicts the anato-
mical structure in 3-D, but the tumor could be hardly observed
due to the limitations of μCT, such as the low contrast for detect-
ing soft tissues. After registration, the 2-D photon distribution
was mapped onto the surface of the 3-D volume data. From
Fig. 12(b), we can notice that there are two bright spots on
the surface of the mouse abdomen, consisting of the gathered
photons emitted from the internal liver tumors, but it could
neither offer the 3-D distribution of the internal tumors, nor sug-
gest how they were located in relation to the organs and tissues
inside the mouse’s body. That is why the following reconstruc-
tion based on the PIS approach is essential.

When the reconstruction was performed, the whole mouse
volume data was discretized into a volumetric mesh containing
5193 nodes and 53,653 tetrahedral elements. Figure 13
describes the results in the case when λ ¼ 10−3 and p ¼ 1.1,
where the reconstruction time is 9.83 s. The liver region is
set to be invisible in order to not cover the reconstructed
tumors, and it can be perceived that there are two tumors inside
the mouse’s body. The smaller one measures about
1.64 × 1.30 × 2.10 mm3, and the volume of the larger one is
around 3.45 × 3.83 × 5.31 mm3.

The above findings suggest that the PIS method is able to
detect the lesions in the above biomedical application, and
two liver tumors have been localized at the same time in the
HCCLM3 orthotopic xenograft mouse model.

4 Conclusions and Future Work
The PIS reconstruction algorithm proposed in this research pro-
ject is capable of enhancing accuracy efficiency, and reliability
in whole-body liver cancer detection mainly using the following
three strategies:

(1) An affine subspace compromised of the previous
direction, which has been employed to compute the
next iterative estimate, instead of using classical lin-
ear search, which could precisely aid the decision of
the direction for optimization, ensuring the recon-
struction accuracy.

(2) An iterative shrinkage strategy has been utilized to
simplify the problem from multiple dimensions to
a single dimension, which is associated with an itera-
tive shrinkage operator that can be computed in par-
allel to accelerate the reconstruction efficiency.

(3) A smooth convex approximation which has been pro-
posed to represent the lp norm regularization term, a
more generalized form for the constraint condition, so
that the analytical solution to the optimal object func-
tion can be achieved to enhance the reliability of this
method.

In addition, two in vivo experiments on nude mice have been
conducted to evaluate the feasibility and limitations of the pro-
posed method in liver cancer detection. The results indicate that:

(1) The DMT technique is not only sensitive in finding
the smaller lesions, which usually cannot be discov-
ered if using the single μCT modality, but also
capable of quantitatively measuring the tumor size

and visualizing its location in the organs and tissues
inside the mouse body in 3-D.

(2) The PIS approach has been verified by the experiment
on a bead-implanted mouse, so it could localize a
tumor that is less than 3 mm in diameter with a posi-
tion bias less than.

(3) The computational efficiency of the proposed recon-
struction algorithm has been improved by one to three
orders of magnitude in contrast to the classical
approaches, and it becomes more computationally
competitive as the dataset size increases.

(4) The reconstruction reliability of the PIS method has
been proven in that it has a good tolerance with dif-
ferent parameters, where the regularization parameter
λ could be no more than 10−3, and the norm p has a
more flexible selection.

(5) The potential of the proposed method for practical
application has been further validated in the experi-
ment on the HCCLM3 orthotopic xenograft mouse
model, where two small lesions less than 1 mm in
diameter have been found by the whole-body recon-
struction.

Future work will emphasize on improving the drawbacks of
the proposed PIS algorithm. Despite tumor size, which could
only be measured approximately, it is still difficult in achieving
an accurate tumor boundary, which is critically important for
surgical removal. This is because FEM was employed to estab-
lish the photon diffusion model in this study, and it is fundamen-
tally limited in describing the shape of objects. On the other
hand, the second experiment could be extended further. It
deserves more in-depth studies of the weak signals from the
internal cancer cells, as well as tumor metastasis resulting in
more internal luminescent sources instead of only one or
two, so that the whole-body reconstruction for multisource
mouse model can be done better.
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