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Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique
capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image process-
ing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-
graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized
control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU,
the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU
memory usage and core throughput. We investigated five computing architectures for computational speed-up in
processing 1000 × 1000 A-scans. The proposed parallelized multi-GPU computing framework enables process-
ing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-
OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1 × 1 × 0.6 mm3 skin
sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work
thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU
processing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work
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1 Introduction
Noninvasive skin imaging is envisioned to play a prevalent role
in the future of dermatology. Because of its accessibility, skin is
amenable to noninvasive diagnostics and therapeutic monitor-
ing; an additional important advantage offered by noninvasive
skin imaging is timeliness, resulting in a more effective use of
the clinician’s time spent treating a patient. Extensive research
has been conducted in the past few decades toward developing
noninvasive skin imaging and diagnostic modalities. Optical
coherence tomography (OCT) offers the capability to image
layers and structures well below the surface of the skin.1–5

Numerous studies using OCT have been performed to image
subsurface layers and structures of skin, including the epider-
mis, dermal–epidermal junction, dermis, hair follicles, blood
vessels, and sweat ducts.6–9 Clinical studies suggest that OCT
may be useful for noninvasive diagnosis of skin diseases and
to assess wound healing.2–5,10–17 The lateral resolution of con-
ventional OCT instruments is limited to tens of micrometers,
hampering the adoption of OCT in a wide range of applications
that require cellular resolution comparable to or approaching
histological resolution. The numerical aperture (NA) of the
optics sets the lateral resolution in the focal plane of the optics

and throughout the depth of focus. The depth of focus is
inversely proportional to the NA. As a result, OCT typically
operates at low NA of around 0.05 to 0.025 with a correspond-
ing lateral resolution in the order of 10 to 20 μm, which enables
a large depth of focus on the millimeter scale (0.6 to 2.4 mm).
Various hardware and software methods have been investigated
to address the trade-off between lateral resolution and depth of
focus, including axicon lenses to generate Bessel beams or
phase masks, holoscopy, and computational techniques. Bessel
beams have successfully demonstrated imaging in biological
tissue with lateral resolution ranging from ∼5 to 8 μm, with
extended depth of focus in the millimeter range.18–20 The
main limitation of Bessel beams imaging has been the reduced
light efficiency of these systems. Phase masks have been inves-
tigated to create an annular mask21 or add spherical aberration to
the optical system,22 with a factor of ∼2 to 3 improvement in
the depth of focus at the expense of some loss of image quality
throughout the range. Holoscopy, which combines full field
Fourier-domain OCT and numerical reconstruction of digital
holography, has been introduced as a solution to achieve
extended depth of imaging with constant sensitivity and lateral
resolution. The lateral resolution is not limited by the NA,
but rather by the numerical reconstruction distance of the holo-
grams. Depth of imaging of ∼3 mm and lateral resolution of
∼10 μm was reported.23 However, holoscopy suffers from non-
compensated phase error caused by multiple scattering (non-
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ballistic) photons in highly scattering samples.23 Computational
methods such as three-dimensional (3-D) Fourier-domain
resampling have been demonstrated in combination with inter-
ferometric synthetic aperture microscopy to extend the imaging
depth to 1.2 mm in skin in vivo; these techniques require an
accurate and stable phase measurement.24

Optical coherence microscopy (OCM) was introduced to
achieve cellular resolution using a higher NA objective (i.e.,
∼0.2) than conventional OCT (i.e., ∼0.04); the gain in resolution
in OCM is reached at the expense of a limited depth of focus in
the order of 100 to 200 μm.25 Gabor-domain optical coherence
microscopy (GD-OCM) was proposed by our group in 2008 to
dynamically extend the imaging depth of OCM26 and has since
started to be adopted in other research groups as well.27 A liquid
lens is dynamically refocused at different depth locations to
acquire multiple images that are then combined in a single vol-
ume. The custom optics can refocus up to a 2-mm imaging
depth. In skin, an imaging depth of about 0.6 mm was achieved
with an invariant lateral resolution of 2 μm throughout the vol-
ume.28 Provided the increased lateral resolution by an order of
magnitude compared with conventional OCT, the images
acquired with GD-OCM have a shallower depth of focus around
the focal plane controlled by the liquid lens, typically in the
order of 60 to 100 μm.29 Therefore, in order to image a volume
up to 0.6 mm in depth for example, the liquid lens is dynami-
cally refocused six times to image six volumes, which are then
fused in postprocessing to produce a volumetric image with
2-μm resolution throughout the 0.6-mm depth.30 The large
dataset and the multiple computational tasks associated with
GD-OCM compound the need for fast processing; performing
the processing steps on conventional architectures takes about
two orders of magnitude longer than the acquisition steps.
Critical to the adoption of GD-OCM in the clinical workflow
is a fast, real-time processing, and rendering of the high-reso-
lution images.

Recently, graphics processing units (GPUs) were shown to
be powerful tools for general numerical simulation,31–35 signal
processing,36 and image processing for a variety applications.37

The use of GPUs has been investigated for several imaging-
related tasks, ranging from image processing steps to image-
based modeling and clinical intervention guidance.38 The
GPU technology was also reported to solve computational prob-
lems related to medical imaging.39,40 Several studies conducted
in the last 4 years have shown how GPUs can improve the
processing speed of OCT imaging.41–55 The use of multiple
GPUs for OCT has also been investigated by peers. Huang
et al.56 demonstrated the use of dual GPUs to simultaneously
compute the structural image intensity and phase Doppler im-
aging of blood flow on both a phantom and the chorioallantoic
membrane. The authors reported a frame rate of 70 fps with an
image size of 1000 × 1024 pixels. The same authors demon-
strated in a different paper GPU-based motion compensation
of handheld manual scanning OCT.57 Zhang and Kang also
investigated the use of dual GPUs architecture to speed up
the processing and rendering steps of an OCT system designed
to guide micromanipulation using a phantom model and vitre-
oretinal surgical forceps. The first GPU was dedicated to data
processing, whereas the second was used for rendering and dis-
play. A volume rate of 5 volumes per second with the volume
size of 250 × 98 × 1024 voxels was reported.58 Later, the same
group demonstrated the use of dual-GPU architecture to guide
microsurgical procedures of microvascular anastomosis of the

rat femoral artery and ultramicrovascular isolation of the retinal
arterioles of the bovine retina.59 A display rate of 10 volumes
per second for an image size of 160 × 80 × 1024 voxels was
reported. In these recent advancements with multiple GPUs,
two GPUs were considered, where one GPU was typically
dedicated to processing and another GPU was used for image
rendering.

Compared with OCT, GD-OCM faces additional challenges
deriving from the higher imaging resolution of 2 μm that
imposes 1-μm sampling, which results in a significantly larger
dataset to be processed. Also, the computation and fusing of six
volumes of data is a demanding task. We propose here a parallel
computational framework using multiple GPUs to enable
real-time imaging capabilities of GD-OCM. In the following
sections, we review the architecture of the GD-OCM system and
detail the imaging process in the central processing unit (CPU)
in order to identify the computational bottleneck of the imaging
process. We then describe the proposed parallelized GPU frame-
work to overcome the limitations (See Sec. 3).

2 Methods

2.1 System Description

The current GD-OCM system fits on a movable cart. The hand-
held scanning probe is attached to an articulated arm that can be
easily adjusted to fit the region of the skin that the clinician
wants to image. The imaging system has micron-class resolution
of 2 μm in skin tissue (average refractive index of 1.4), both
axially and laterally. The light source is a superluminescent
diode laser centered at 840 nm with 100 nm FWHM
(BroadLighter D-840-HP-I, Superlum®, Ireland). The micro-
scope objective probe with 2-mm field-of-view incorporates
a liquid lens, which allows dynamic-focusing in order to
image different depths of the sample while maintaining a lateral
resolution of 2 μm within the imaging depth of up to ∼2 mm by
design.28,29 A custom dispersion compensator and a custom
spectrometer with a high-speed CMOS line camera (spl4096-
70 km, Basler Inc., Exton, Pennsylvania) are used to acquire
the spectral information.60,61 With a set depth of focus of
100 μm, the liquid lens is refocused six times to image
600 μm in depth in skin tissue, yielding six volumes of data
to acquire and to process. Conventionally, a skin sample of 1 ×
1 × 0.6 mm3 acquired with GD-OCM generates 49 GB (i.e.,
6 zones × 1000 × 1000 × 4096 × 2 bytes) of data to be proc-
essed. Although the current total acquisition time is
1.43 min, the image processing steps on this high-resolution
data may take up to 3.5 h on a conventional sequential architec-
ture, as discussed in the following section, before the scanned
data can be visualized in 3-D by a clinician.

2.2 Description of the Imaging Process in CPU

The imaging platform runs on a workstation equipped with
a Supermicro X8DTG-QF motherboard. The system operates
on 64 bit Microsoft® Windows® 7 with two processors Intel®

core i7/Xeon (X5650 6-core 2.66-GHz CPUs, each with 12-
MB cache) and 48 GB of RAM to allow the operating system
to run smoothly while the GD-OCM images are being acquired.
High-efficiency data security and storage on a 2.4-TB (eight
Seagate 300GB SAS 15K hard drives) hard drive is made pos-
sible by an LSI, San Jose, California MegaRAID 9260 redun-
dant array of independent disks (RAID) card. A Camera-link
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Bitflow frame grabber Karbon-CL, Woburn, Massachusetts is
used to buffer the data from a camera, and a DAQ card
(National Instruments, PCI-6733) is dedicated to control the gal-
vanometer scanners and liquid lens and generate the trigger sig-
nal for the camera to synchronize the scanning and the
acquisition at the beginning of each zone. In CPU-based
processing, the imaging process consists of acquisition, postpro-
cessing, fusing, and rendering steps. All these steps, excluding
rendering, run on LabVIEW™ 2012 software (National
Instruments, Austin, Texas).

2.2.1 Acquisition

The acquisition step consists of lateral scanning of the same skin
area six times with different focal lengths of the liquid lens. For
each focal length, 1000 × 1000 amplitude scans (A-scans) spec-
tra with a lateral sampling interval of 1 μm are acquired. Data
with single precision are saved in parallel on the hard drive in
binary format. In order to run acquisition and saving independ-
ently, a buffer was created in LabVIEW™ to hold the acquired
data while saving is in progress using the high-speed storage
capability of RAID technology. After the acquisition of the
first zone, the focal length is shifted to the next zone and the
lateral scanning is repeated. After acquisition of all six zones,
six 1000 × 1000 A-scans are saved on the disk. The acquisition
uses a high-speed CMOS line camera with 70; 000 A-scans∕s,
for an acquisition time of 14.3 μs per A-scan. The total acquis-
ition time is then 1.43 min for the six zones. A further reduction
in acquisition is anticipated with the higher frame rate cameras
that have already reached the market. Each A-scan consists of
a binary spectrum of 4096 pixels, thus the acquisition step
generates 49 GB (6 zones × 1000 × 1000 × 4096 × 2 bytes) of
data that is saved to the disk for postprocessing.

2.2.2 Postprocessing

After reading data from the disk, the postprocessing steps consist
of performing DC removal, k-space linearization, fast-Fourier
transform (FFT), gray scaling, and auto-synchronization.

The DC term for each B-scan is a one-dimensional (1-D)
array of 4096 pixels, which is obtained by computing the
mean of the 1000 A-scans that form the B-scan. The DC term
is then removed from each A-scan. Next, each A-scan undergoes
k-space linearization, FFT, and gray level and log scaling using
a modified version of existing functions in LabVIEW™. To
achieve high-speed acquisition, the hardware synchronization
is applied just once at the beginning of each zone. As a conse-
quence, a drift in hardware synchronization between the camera
and the scanning is experienced. An auto-synchronization

software was developed and implemented to compensate the
drift with an intercorrelation algorithm applied between two
consecutive B-scans. The peak of the intercorrelation corre-
sponds to the number of shifted A-scans. The region of interest
of the shift-compensated frames is buffered in the memory for
the fusing step. Each zone has a dedicated buffer to facilitate the
fusing step. The total postprocessing time, including reading
data, is 29 min for one zone, yielding 2.9 h for six zones
(see detailed timing in Table 1).

2.2.3 Fusing

In the fusing step, the six zones of the sample are fused in one
volume using the Gabor fusion technique.27,62 For each B-scan,
the six frames are accessed from the buffers; only the focused
region (the region within �50 μm around the focal plane) of the
six frames contributes to the final image. Thus, each frame is
multiplied by a window of width ∼100 μm centered at the
focal plane of the dynamic focus probe. The window serves
as a weighting function for each frame in the fusing process.
The six windows are preoptimized based on the voltage applied
to the liquid lens and the focal shift for each acquired image. The
final image is obtained by adding the six windowed frames. All
focused B-scan frames are saved back to the disk using binary
format. The computation time for the fusing process is estimated
at 20 min, accounting for the disk saving time.

2.2.4 Rendering

Voxx and open source ImageJ are used to render the volumetric
image and display the two-dimensional (2-D) and 3-D images.
The time needed for rendering is ∼10 min.

In summary, the 3-D imaging and visualization of a 1 × 1 ×
0.6 mm3 sample using a sequential implementation takes about
3.5 h. The analysis of the sequential implementation (Table 1)
shows that the k-space linearization is the most time-consuming
operation (44%); followed by the gray level and log scaling
(29%); fusing (8%); DC removal (8%); FFT (7%). Saving, load-
ing, and auto-synchronization account for 4% altogether.

As a next step to increase the computational speed on CPU,
the use of pipelined computation was investigated, in which the
operations with independent parameters are regrouped in differ-
ent operation blocks, leveraging more advanced multithread
CPU capabilities. Specifically, a process pipelining approach
was employed, in which different operation blocks in the post-
processing and fusing steps were separated and performed in
a pipelined manner. Figure 1 shows the flowchart of the pro-
posed pipelined computation architecture in which the two

Table 1 Timing of the processing steps and computational speed-up between sequential and pipelined implementations.

1 Zone
(4096 × 1000 × 1000

Loading data
from the disk

DC
removal

K-space
linearization

Fast Fourier
transform (FFT)

Gray level and
log scaling

Auto
synchronization Fusing Saving

Total
time (s)

Sequential central
processing unit
(CPU) time(s)

30 148 846 137 553 5 150 54 1923
(32 min)

Pipelined CPU
time (s)

Running in
parallel with
the next
operation block

148 846 137 Running in parallel with previous operation block 1131
(19 min)
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most time-consuming operations are separated in two different
blocks running in parallel.

In the first block, the input A-scan data are loaded into a
queue data structure while they are also simultaneously accessed
for image processing in the second operation block, which con-
sists of three sequential steps—DC removal, k-space lineariza-
tion, and FFT. Similarly, another queue data structure is used to
hold the modulus of the FFT outputs. The last operation block,
dedicated to log scaling, auto-synchronization, and fusing,
accesses the queue in a parallel manner and saves the final
fused data into the hard drive. Table 1 summarizes the computa-
tional speed-up of the pipelined approach as compared with the
sequential implementation.

The pipelined CPU implementation completes processing one
zone in∼19 min, offering a 1.7× speed-up over the 32min of the
sequential implementation. In this computation, as in prior work,
k-space linearization is the bottleneck. In prior investigations,
hardware solutions to k-linearization have been reported with
good results.63–65 However, regardless of the approach to address-
ing the bottleneck, real-time imaging on CPU cannot be achieved,
even with the pipelined approach. The CPU implementation is
fundamentally limited by the number of cores compared with
GPU that can allow more advanced parallelization implementa-
tion for the entire processing.

2.3 Proposed Multi-GPU Framework for GD-OCM

Since the 1-D A-scan signals can be processed independently of
each other, a parallelized scalable processing can fully leverage
a multi-GPU system. The multi-GPU framework was designed
to achieve the acquisition of each zone in parallel with the
processing of the previous zone and yields the 3-D visualization
of the sample within seconds after the acquisition of the entire
volume is completed.

The motherboard of the workstation (Supermicro®) can hold
up to four GPUs and was configured based on the requirement to
complete the processing of one zone within seconds, while the
next zone is being acquired. Each of the GPUs is connected to
the main system using a PCIe-2.0 connectivity facilitating up to
8-GB∕s data transfers between the CPU and each of the GPUs.
The GPU processes run independently of each other and can
occasionally communicate with each other using the PCIe-2.0
connectivity, with the CPU forming the intermediary communi-
cation step. Buffers are used, as in the CPU implementation, to
serve as temporary memory. After the processing of each frame,

only the focused region (1000 × 100 μm2) is held in the GPU
buffer, thus dividing by six the size of data to be managed during
the fusing step.

Figure 2 shows a schematic of the GD-OCM instrument and
the proposed architecture of the multi-GPU-based GD-OCM
imaging system. The acquisition time for each of the six
zones, accounting for the focal length of the liquid lens being
adjusted six times, is 14.3 s. During the acquisition of the first
zone, which consists of a data size of 1000 × 1000 A-scans, the
data is held in a temporary CPU buffer. When the acquisition of
this zone is completed, the data is structured and divided into
four sections, which are transferred to the four GPUs via the
four PCIe-2.0 interfaces. During that time, the focal length of
the liquid lens is shifted by 100 μm to acquire the next zone.
The acquisition of the next zone is done in parallel with the
processing of the previous zone. The processing consists of
DC removal, k-space linearization, computer unified device
architecture (CUDA) FFT, gray level and log scaling, and
auto-synchronization. Once the processing is completed for
each frame, the resultant data is windowed to retain only the
focused region. Data is held in temporary buffers in each
GPU to be fused with the next zone. The GPUs are then released
to handle processing of the next available zone. After the
processing of each zone, the focused region is fused with the
previous fusing result and hold in GPU memory as illustrated
in Fig. 3 for one B-scan (1000 A-scans). Once all six zones
are processed, visualization of the 3-D scan is enabled by
GPU-based volume rendering, as well as 2-D visualization.
Visualizing the 3-D structure in real-time is a computationally
complex task mainly because of the size of the 3-D data
(1000 × 1000 × 400 voxels). For this study, the rendering was
performed with GPU-based real-time volume rendering in
one of the GPUs, providing a rendering time of 50 ms for
one volume.

2.4 Implementation of the Multi-GPU Framework

The software development framework for the proposed system
consists of LabVIEW™ 2012 and NVIDIA® CUDA 5.0
programming interfaces. LabVIEW™ was employed to inter-
face with the GD-OCM image acquisition system and to control
access to the GPU cards. Communication between LabVIEW™
and CUDA was achieved with a dynamic-link library (DLL)
developed in Microsoft® Visual Studio 2010. The different
steps of the processing, including DC removal, k-space
linearization, gray scaling, and auto-synchronization, were
implemented in C++ using Microsoft® Visual Studio 2010;
CUDA Fast Fourier Transform (CUFFT) was performed with
the existing function in the CUDA environment. Parallelized
access to the GPUs was made possible via multiple DLL
calls with parameters such as the GPU identity, calibration,
and frame-related parameters. Although each DLL call was
designed to employ multiple cores in parallel, a set of DLL
calls was implemented in parallel to fully employ the GPU
cores available in each GPU and initiate the GPU boost
capability.

3 Results and Discussion

3.1 Run-Time Analysis of the Multi-GPU Framework

For the run-time analysis, five system configurations were inves-
tigated, as reported in Table 2. Systems A and B consisted of

Fig. 1 Pipelined computation in central processing unit (CPU).
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Fig. 2 Multi-graphics processing unit (GPU) architecture for Gabor-domain optical coherence micros-
copy. The frame grabber is connected to the workstation’s motherboard (Supermicro®) using PCIe
x8. Red color blocks represent the buffering steps. Large arrows represent data transfer of a batch
of frames, whereas narrow arrows represent transfer of an individual frame. Double-direction arrows
between image processing steps and fused data blocks illustrate the exchange of frames between
these two steps. The feedback arrow (Zone # Loop) represents the release of GPUs to handle the
next zone. Each of the four GPUs runs independently during the processing and fusing and communi-
cates with the other GPUs during the rendering.

Fig. 3 Illustration of the real-time Gabor fusing process on GPU for one frame.
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two GTX 680s and two GTX Titans GPUs, respectively, both of
which employ adaptive processor and memory overclocking.
Systems C and D consisted of four NVIDIA® C1060 and
C2050 general purpose GPUs, which did not employ adaptive
processor and memory overclocking. System E employed an
Intel core i7 processor, which provided the benchmark CPU
performance.

Table 3 presents the average cumulative run times for the
different configurations of Table 2. The run times are presented

for a single GPU and all GPU scenarios, processing a total of
1000 × 1000 A-scans. It can be seen that, using System A, a
computational time of 29 s with a single GPU and 13 s with
two GPUs was obtained. System B provided an average perfor-
mance of 31 s with a single GPU and 15 s with two GPUs.
Compared with a pipelined CPU running time benchmarked
at 19 min, Systems A and B produce a computational speed-
up of 83× and 73×, respectively—close to two orders of mag-
nitude speed up. Systems C and D, which employ four GPUs,
provided an average computation time of 235 and 115 s, respec-
tively. Their lower performance is attributed to a lower number
of processing cores in the system.

Figure 4 presents the average cumulative run time results for
the image processing using configurations A and B. For both
systems, the performance of the GPUs improved as the number
of parallel A-scans being processed was increased. The overall
computation time decreased exponentially with an increase in
the number of parallel A-scans. For the case in which a total
of 8k A-scans were processed in parallel, System A provided
an average computation time of 175 and 89 s for the one and
two GPU setups, respectively, whereas System B provided com-
putation times of 156 and 82 s.

The results show the scalability of the proposed framework,
which is critical for the improvement of the computational
speed. From Fig. 4, it can be observed that the computational
time taken by two GPUs to perform a given number of A-scans
in parallel is equal to around half the computation time taken by
a single GPU to perform the same amount of A-scans. Such an
observation supports the fact that the framework is agnostic to
the number of GPUs used for the computation and thus provides
a scalable computational time. In comparing Systems A and B,
as the number of parallel A-scans is increased up to 40k, the
performance of the two systems is quite comparable. The slight
improvement in the performance of the GTX 680 compared with
GTX Titan, which has almost twice the number of processing
cores, can be attributed to the adaptive processor overclocking
achieved by the GPU boost algorithm on the NVIDIA® GTX
680 cards.35

As the GD-OCM setup was limited by the camera acquisition
time (14.3 s per zone), the number of parallel A-scans

Table 2 System configurations investigated for Gabor-domain opti-
cal coherence microscopy (GD-OCM) processing.

System Configuration

Number of graphics
processing unit (GPU) Cores

A 2 NVIDIA® GTX 680 cards 3072 cores

B 2 NVIDIA® GTX Titan 5376 cores

C 4 NVIDIA® Tesla C1060 960 cores

D 4 NVIDIA® Fermi C2050 1792 cores

E Intel core i7 —

Table 3 Computational results using the multi GPU-based GD-OCM
image processing for a data volume of 1000 × 1000 A-scans.

System

Average
performance using

one GPU (s)

Average
performance using

two GPUs (s)

Average
performance using

four GPUs (s)

A 29 13 —

B 31 15 —

C 940 470 235

D 460 230 115

Fig. 4 GPU boost comparison for Systems A and B as a function of the total number of A-scans proc-
essed in parallel.
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processing was set to 40k for System A to yield a processing
time that was faster than the acquisition time. Nevertheless,
the implementation presented here leads to a scalable real-
time GD-OCM image processing with a finite increase in the
number of GPUs used in computation. Table 4 shows the
detailed processing time for one zone (1000 × 1000 A-scans)
on System A with 40k total parallel A-Scan calls per iteration.

The parallelized two-GTX 680s configuration of System A
provided a computational time of 13.64 s for one zone
(1000 × 1000 A-Scans), yielding a computational speed of
600 MB∕s. As compared with the pipelined CPU implementa-
tion, this gain corresponds to a computational speed-up of over
one order of magnitude.

The ability of the proposed framework to account for a larger
number of parallel A-scans can be extrapolated from trends
observed in Fig. 4; it can be seen that, based on the required
computation time, the optimal number of A-scans to be proc-
essed in parallel can be selected. As multiple cards are being
considered, thermal management of the cards is needed to
avoid over-heating, which could lead to a failure of the sys-
tem—an important consideration for use of the system in a
clinical environment where a repeated usage for imaging the
patient’s anatomy is needed. Instability was experienced on
GPU performance when the temperature of the cards went
over ∼55°C. This occurred when the number of parallel GPU
calls was increased. Effective thermal dissipation design that
optimally removes heat from all the GPUs, while maintaining
the PCs form factor, is critical. As an example, new PC form
factors with unified thermal dissipation mechanisms for effec-
tive heat removal in GPUs have been investigated by Apple Inc.,
Cupertino, California66 In addition, recent developments in
NVIDIAGPUs (Tegra K1) have focused on using a significantly
reduced power source while maintaining optimal performance

as a means to address GPU over-heating.67 Although such
designs are in their initial stages of development, future
advancements in PC form factors and GPU designs will address
the over-heating issue effectively.

The proposed multi-GPU computational framework offers
the opportunity to reduce the processing time by the optimal
choice of number of parallelization and GPU cards while
preserving long-term use of the system. Also, a fully integrated
C++ interface is considered to optimize the overall system
robustness.

3.2 Processing-Based Image Quality Analysis

The image quality of CPU- and GPU-based processing of the
same A-scan was investigated at different steps of the processing
to ensure that the same algorithm was implemented on CPU and
GPU. For each A-scan the output arrays of each step with CPU
and GPU were compared; no difference was found. Figure 5
shows the 2-D image of the same B-scan processed on CPU
and on GPU with neither visual nor statistical difference.

The proposed GPU framework was used to image the
pointer fingertip. Figure 6 presents three orthogonal views as
well as a 3-D volume of the processed and rendered volume
using the proposed GPU framework. The cross sectional images
of x–z and y–z planes [Figs. 6(a) and 6(c)] show the different
layers of the skin (SC: stratum corneum, SG: stratum granulo-
sum, SS: stratum spinosum, and SB: stratum basale). The en
face images of x − y plane [Figs. 6(d) and 6(e)] show the gran-
ulosum cells nuclei and blood vessels, respectively, demonstrat-
ing the high-lateral resolution of the imaging system.
Figure 6(b) shows a snap shot of the 3-D volume of 1 mm
by 1 mm by 0.6 mm rendered on GPU using max intensity
renderer.

Table 4 Computational speed-up of the multi GPU based GD-OCM image processing compared with a pipelined CPU implementation.

1 Zones
(4096 × 1000 × 1000)

Reading
data

Data transfer
host->device

DC
removal

K-space
linearization FFT

Gray level and
log scaling

Auto-
synchronization Fusing Saving

Total
time (s)

Pipelined CPU time (s) Running in parallel with
the next operation block

148 846 137 Running in parallel with previous operation block 1131

Parallelized two-GTX
680 s time(s)

NA 1.57 2.12 0.57 1.57 3.80 0.67 3.34 NA 13.64

Fig. 5 Image comparison between CPU and GPU processing of the same B-scan (zone 3 before the
fusing). (a) CPU-based image processing, (b) GPU-based image processing. The depths reported are
the distances in skin tissue (n ¼ 1.4). The GPU image was acquired with the architecture A (Two GTX
680).
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4 Conclusion
A scalable and parallelized multi-GPU processing framework
was proposed to overcome the processing speed limitation of
GD-OCM. Five different scenarios of multi-GPU configurations
were tested, and the use of two GTX 680 cards was found to
yield the best performance for this application. For one zone
(1000 × 1000 × 4096), an average performance of ∼13 s when
processing 40k A-scans in parallel on both cards was achieved,
yielding a processing speed of 600 MB∕s. This enables real-
time processing of a skin volume of 1 × 1 × 0.6 mm3 with 2-
μm resolution. In particular, the goal of reducing the processing
time to be faster than the acquisition time was achieved. Over
one order of magnitude computational speed-up was obtained
compared with the pipelined CPU processing, with no quanti-
tative loss of image information. Importantly, results show that if
two GPUs are considered the clinician can visualize the 3-D vol-
ume 13 s after the acquisition is completed, and that time is esti-
mated at 6.5 s with four GPUs based on the demonstrated
scalability of the framework. Thus, the proposed framework
enables real-time processing, a fundamental step on the path
toward adoption of GD-OCM in a clinical environment.
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