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Abstract. Two-photon microscopy (2PM) has revolutionized biomedical imaging by allowing
thin optical sectioning in relatively thick biological specimens. Because dispersive microscope
components in 2PM, such as objective lens, can alter temporal laser pulse width (typically being
broader at the sample plane), for accurate measurements of two-photon absorption properties,
it is important to characterize pulse duration at the sample plane. We present a simple modi-
fication to a two-photon microscope light path that allows for second-harmonic-generation-
based interferometric autocorrelation measurements to characterize ultrafast laser pulse duration
at the sample plane using time-correlated single-photon counting (TCSPC). We show that
TCSPC can be used as a simple and versatile method to estimate the zero time delay step value
between two adjacent ultrafast laser pulses for these measurements. To demonstrate the utility of
this modification, we measured the Coherent Chameleon-Ultra II Ti:sapphire laser pulse width at
the sample plane using a 10× air, 40× air, or 63× water-immersion objective lens. At 950-nm
two-photon excitation, the measured pulse width was 154� 32, 165� 13, and 218� 27 fs

(n ¼ 6, mean� standard deviation), respectively. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.25.1
.014516]
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1 Introduction

Over the past three decades, since two-photon microscopy (2PM) was first demonstrated by
Denk et al.,1 applications of 2PM have significantly contributed to our knowledge of a broad
range of biological phenomena by allowing noninvasive imaging of biological specimens
in three dimensions.2–4 Furthermore, since an ultrafast pulsed-laser source for two-photon
excitation generates an inherently small excitation/observation volume (∼subfemtoliter), 2PM
has played a pivotal role in introducing powerful time-correlated single-photon counting
(TCSPC) techniques, such as fluorescence lifetime imaging (FLIM) and fluorescence correlation
spectroscopy to the biomedical community.5–7

The efficacy of 2P excitation is dependent on the laser wavelength, its average power, rep-
etition rate, and pulse width. While wavelength, power, and repetition rate are readily measured
using standard laboratory equipment, ultrafast laser pulse width, usually ranging between 70 and
a few hundred femtoseconds in duration, can be measured using highly specialized equipment.
Furthermore, commercial autocorrelators used to measure pulse width are expensive and
typically measure the pulse width as the laser beam leaves the laser, not at the sample plane of
a two-photon microscope. Group velocity dispersion (due to microscope dispersive optical
components) can alter pulse width, which is, characteristically, broader at the sample plane.8–11
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In this paper, we present a second-harmonic generation (SHG)-based interferometric auto-
correlation technique to characterize ultrafast laser pulse duration at the sample plane using a
simple modification to a two-photon microscope light path. We demonstrate that TCSPC can be
used as a simple and versatile method to estimate the zero time delay step value between two
adjacent ultrafast laser pulses for these measurements. Finally, we demonstrate the utility of this
approach by measuring the laser pulse width at the sample plane after passing through three
different objective lenses.

2 Methods and Materials

2.1 Experimental Setup

The experimental setup for in situmeasurement of femtosecond laser pulse duration is illustrated
in Fig. 1. A mode-locked Ti:sapphire laser (Chameleon-Ultra II, Coherent, Santa Clara,
California) operating at 80-MHz repetition rate and 950-nm center wavelength was used as
an excitation source for an inverted microscope (Axio Observer D1; ZEISS, Oberkochen,
Germany). The linearly polarized laser beam was first spatially filtered and expanded (not shown
in diagram) by a spatial filter assembly (KT310; Thorlabs, Newton, New Jersey). A small part of
the main beam picked up through a wedged beam sampler (10B20-01NC.2; Newport, Irvine,
California) was used to synchronize laser pulse excitation with data acquisition using a fast
photodiode detector (DET10N; Thorlabs). The laser beam was split into two arms via
a 50:50 beam splitter (UFBS5050; Thorlabs). After passing through each half-wave plate
(AHWP10M-980; Thorlabs), the two beams were subsequently recombined via a second
50:50 beam splitter (UFBS5050; Thorlabs). The relative time delay τ between two adjacent
pulses was controlled using the motorized delay line (ILS200CC; Newport), with 200-mm travel
range (corresponding to 1.333-ns optical delay). The recombined beam passed through a linear
polarizer (LPNIR100-MP; Thorlabs), so that the intensity of each laser pulse could be independ-
ently adjusted by rotating its specific half-wave plate, and also to confirm that each laser pulse
has the same linear polarization at the sample plane. A multiphoton short-pass dichroic beam
splitter (FF670-SDi01-25636; Semrock, Rochester, New York) was used to reflect the excitation
beam to an air microscope objective (Zeiss 40 × ∕0.9 NA, Jena, Germany). The emission from
the sample was collected by the same objective lens and spectrally filtered by transmitting
through the same dichroic beam splitter. An infrared block filter (BG39; SCHOTT, Mainz,
Germany) located immediately after the dichroic beam splitter was used to block any residual
two-photon excitation. Additional neutral density filter located in front of the detector was
included to adjust SHG signal intensity. A hybrid detector (HPM-100-40; Becker & Hickl,
Berlin, Germany) connected to a detector control module (DCC-100; Becker & Hickl) was used
to detect the SHG signal. Detected photons were processed with a TCSPC module (SPC-150;
Becker & Hickl). The dark count rate for the detector was 300 cps at room temperature.

Fig. 1 Schematic diagram of a modification to a two-photon excitation time-resolved fluorescence
microscopy to allow characterizing ultrafast laser pulse duration at the sample plane. The dotted
and solid red arrows indicate the directions of the temporally offset and static laser pulses, respec-
tively. BS, beam splitter; HWP, half-wave plate; L, lens; LP, linear polarizer; DL, delay line;
D, hybrid detector; PD, photodiode detector; BC, beam combiner; OL, objective lens; DM, dichroic
mirror; BD, beam dump.
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A custom-written LabVIEW program was used to control the motorized delay line and to pro-
vide a trigger signal to SPCM software (ver. 9.81; Becker & Hickl) running in single (SING)
mode for data acquisition and storage.

2.2 Second-Harmonic Generation

Dry sodium phosphate monobasic monohydrate (NaH2PO4· H2O; Mallinckrodt Baker, Inc.,
Paris, Kentucky) powder loaded into a glass-bottom dish (P35G-1.5-10-C; MatTek, Ashland,
Massachusetts) was used to generate a 475-nm second-harmonic signal from the ultrafast
Ti:sapphire laser. Second-harmonic signals were adjusted to yield a photon count rate between
∼10;000 and ∼100;000 cps to avoid both TCSPC time bin saturation and pile-up artifacts.12

2.3 Data Analysis

IGOR Pro 8 software was used to process and fit interferometric autocorrelation data. GraphPad
Prism (ver. 8.2.1) was used to calculate mean, standard deviation (SD), analysis of variance, and
the Kruskal–Wallis test with Dunn’s multiple comparisons.

3 Results

Our light path modification generates a pair of ultrafast laser pulses with one pulse being static
every 12.5 ns (for an 80-MHz laser) and the second pulse being temporally offset from the static
pulse by between −860 andþ479 ps. We first tested this method by measuring the time-resolved
SHG traces generated from both static and temporally offset ultrafast pulses. By sweeping the
delay line over the possible scanning range of 200 mm, it was observed that the relative time
delay τ between the static and temporally offset laser pulses was shifted accordingly, as shown in
Fig. 2(a). Figure 2(b) shows that the measured relative time delay was in good agreement with
the calculation from the position of the delay line. Using this approach, one can also estimate the

(a) (b)

Fig. 2 (a) SHG-based time-resolved traces with varying relative time delay τ between the static
and temporally offset laser pulses. Each time-resolved SHG trace was offset vertically for clarity.
The dotted line indicates zero time delay (τ ¼ 0), as well as the position of the static laser pulse
pathway. (b) The measured and calculated relative time delay was plotted as a function of the
position of the delay line ranging from 0 to 200 mm. The position of the delay line SHG pulse
was used to calculate the relative time delay (blue trace). Through these TCSPC measurements,
one can rapidly estimate the delay line position where both laser pulses overlap temporally as
shown by the dotted red arrows.
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position of the delay line associated with zero time delay between the two laser pulses (τ ¼ 0).
The “decay-like” feature observed in time-resolved SHG traces, shown in Fig. 2(a), is caused by
a convolution with the instrument response function of our TCSPC system, and the full width at
half maximum (FWHM) of an SHG signal from a SING ultrafast laser pulse can be used to
estimate the instrument response function of the system, in this case, ∼95 ps.

As expected, when the absolute value of the relative time delay between the two laser pulses
are less than or equal to the instrument response function, we could no longer resolve the two
SHG traces as shown in Figs. 3(a) and 3(b). Interestingly, we did not observe any interferometric
signal in Fig. 3(b). Presumably, the relatively large time delay steps used for these measurements
(13 ps, corresponding to a 2-mm delay step size) jumped over the region where positive and
negative interferences between the two laser pulses were expected to be observed.

To observe these interreference patterns, we next scanned delay times bracketing our calcu-
lated τ ¼ 0 value with 6.7-fs steps (1-μm delay step) from −800 to 800 fs, as shown in Fig. 4(a).
The green, red, and black traces in the inset of Fig. 4(a) correspond to the time-resolved SHG
traces associated with constructive, destructive, and no interference between the static and tem-
porally offset laser pulses, respectively. Thus, we conclude that the TCSPC data are useful to
rapidly estimate the zero time delay position, so as to effectively characterize ultrafast pulse
width. Figure 4(b) shows a typical interferometric autocorrelation trace ranging from −800 to
800 fs obtained at the sample plane using a 63 × ∕1.2 water-immersion objective lens (Zeiss)
by integrating photon counts over 12.5 ns for each time-resolved SHG curve in Fig. 4(a). The
normalized SHG photon count was calculated by subtracting the minimum photon count from
the raw trace and subsequently normalizing the average background photon count of the sub-
tracted trace (where τ < −500 fs or >500 fs). Since the peak-to-background ratio was close to
8:1 (see Sec. 6) and we observed near-perfect symmetry of the interferometric autocorrelation
around zero time delay, we concluded that the experimental setup was optically well-aligned.
The normalized interference trace was fit to a Gaussian function to measure the FWHM, i.e.,
291 fs, corresponding to an effective pulse duration of 189 fs assuming an unchirped sech2-
shape pulse profile.13 Since the interferometric autocorrelations measured by this approach are
obtained without phase stabilization, reproducible interferometric phase information is hard to
measure. For this reason, as shown in Fig. 4, the interferometric autocorrelation trace was fit
using a simple Gaussian model to estimate the intensity autocorrelation.

To demonstrate the utility of this method, we measured FWHM pulse durations at the
sample plane through three different objectives: 10 × ∕0.3 EC Plan-Neofluar, 40 × ∕0.9 EC
Plan-Neofluar, and 63 × ∕1.2W C-Apochromat (Zeiss). The mean and SD values from six
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Fig. 3 (a) Time-resolved SHG traces obtained when either the delay line optical pathway was
blocked (blue), the static delay optical pathway was blocked (green), or without any blocking
(black). Here, the relative time delay between the blue and green traces was 49 ps. The sum
of the two individual SHG traces from SING laser pulses (greenþ blue) is plotted for comparison
with the black trace (dotted red trace). With a 49-ps delay, the black trace cannot resolve the two
individual laser pulses that form it. (b) Time-resolved SHG curves are plotted for varying τ values.
The τ values ranging from −180 to 217 ps with 13-ps step-increases were used to illustrate the
range of τ values where our microscope cannot resolve the two laser pulses (∼ − 100 to 100 ps).
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measurements for the 10×, 40×, and 63× objective lenses were 154� 32, 165� 13, and
218� 27 fs, respectively. These results indicate that the pulse duration values for the 10× and
40× objective lenses were significantly shorter than the 63× objective lens (p < 0.01, by analysis
of variance), indicating that the 63× objective lens induces more pulse broadening than the
10× or 40× objective lenses. Presumably, the additional glass components required for chro-
matic and spherical aberration correction in an apochromatic lens result in pulse broadening.
A direct comparison of the efficacy of different objectives for the two-photon excitation is com-
plicated because in addition to supporting different pulse durations, as we have demonstrated
here, different objectives may also have different numerical apertures, spectral characteristics,
and point spread functions. If these variables are not altered, and assuming there is no saturation
of the fluorescent signal, two-photon intensity has been shown to be inversely proportional to the
excitation pulse width.14

4 Discussion

To circumvent the difficulties for characterizing ultrafast pulse duration at the sample plane,
we developed and tested a simple and reliable method for interferometric autocorrelation
measurements using TCSPC. Because the mean pulse duration values for the 10×, 40×, and
63× objective lenses were measured, as shown in Fig. 5, we can estimate total group delay
dispersion, D in fs2, of each microscope system using the following equation:3,15,16

EQ-TARGET;temp:intralink-;e001;116;178D ¼ τ2in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτout∕τinÞ2 − 1

7.68
;

r
(1)

where τin and τout are FWHM of the excitation pulse before and after dispersive microscope
optical components, respectively. Assuming 140 fs for the pulse duration before the dispersive
components (based on the manufacturer’s laser specification), the total group delay dispersion at
950 nm for each objective lens corresponds to 3241, 4411, and 8442 fs2, respectively. These
values are in good agreement with a typical range of total group delay dispersion in 2PM
(between 3000 and 20;000 fs2).3 It is noteworthy that the efficacy of two-photon excitation

(a) (b)

Fig. 4 (a) Time-resolved SHG curves are plotted for varying τ values. The τ values ranging from
−800 to 800 fs with 6.7-fs step-increases were used to illustrate the range of τ values (∼� 300 fs)
where the temporally overlaping laser pulses display both constructive and destructive interfer-
ences. Inset shows representative time-resolved SHG traces where constructive (green), destruc-
tive (red), and no (black) interferences were observed. The black, red, and green arrows on the
time delay axis indicate time delays of −800, −20, and 0 fs between two adjacent ultrafast laser
pulses, respectively. (b) The interferometric SHG autocorrelation trace (gray line and circle) for
τ values ranging from −800 to 800 fs in 6.7-fs steps was measured through a ZEISS 63× water-
immersion objective lens at the sample plane. The intensity is normalized to the average back-
ground. The solid red trace corresponds to a Gaussian fit of the intensity autocorrelation and is
used to measure its FWHM, 291 fs and in turn this was then used to estimate the laser pulse
duration assuming a sech2 pulse profile by multiplying the Gaussian fit FWHM by 0.648 to yield
an estimated laser pulse width of 189 fs.
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fluorescence is inversely proportional to the temporal pulse width of the excitation pulse.3,15

Thus, the method described here can be used to measure the altered pulse duration at the sample
plane, and along with wavelength, optical power, and repetition rate of the two-photon excitation
laser, these values can be used and adjusted to maintain the same level of two-photon fluores-
cence intensity.

Several interferometric measurement approaches have been used to measure laser pulse
width at the sample plane of a multiphoton microscope.8,10,11,17–20 What is unique to the approach
presented here is the use of TCSPC. In comparison to simple intensity measurements used with
the other approaches, TCSPC records photon counts as a function of time with high precision
and accuracy, as illustrated in Figs. 2–4. This capability has great utility for determining the
exact delay stage position where the two laser pulses, as used for autocorrelation measurements,
overlap in time (zero time delay), as illustrated in Fig. 2. A negative aspect of this approach is
that it requires the added expense of acquiring a TCSPC module (∼$13;000), a component
that is not absolutely required for autocorrelation interferometric measurements. Nonetheless,
we believe that this added expense is warranted when factoring in the time and effort saved in
aligning a microscope-based interferometer. We also note that many multiphoton systems
already have TCSPC modules for multiphoton FLIM and that the expense of purchasing
a TCSPC module is a relatively small fraction of the expense involved in building or buying
a multiphoton microscope.

Other differences between our approach to measuring laser pulse width at the sample plane
and approaches used in some of the previously reported methods8,10,11,17–20 involve: (1) the
method used for scanning the delay line laser pulse and (2) how multiphoton excitation is
detected. In reference to the first point, in our system, we use a motorized delay line with a
200-mm travel range in 1-μm discrete steps, which corresponds to 1.333-ns maximal optical
delay in 6.7-fs steps. Delay lines with a shorter step size (0.1 μm) are also available and their
use would allow 0.67-fs steps in our system. This in turn would allow higher precision for meas-
uring interferometric fringes in the autocorrelation function but was not deemed necessary in this
study. One of the advantages for using a long-travel motorized delay line in conjunction with an
interferometric setup is that these same components can also be used as the basis for building an
ultrafast pump–probe spectroscopy setup. Other approaches for measuring laser pulse width
have used continuous scanning methods, such as vibrating mirrors mounted on a modulated
speaker or motor to continuously scan the delay line. These systems are typically less expensive
to implement but have a much shorter travel range and therefore require more precise alignment.
In reference to the second point, in our system, ultrafast infrared laser pulses are converted to
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Fig. 5 The FWHM pulse durations of the femtosecond laser pulse were measured at the sample
plane through 10× (gray circle), 40× (blue square), and 63× (red triangle) microscope objective
lenses. Bars indicate the mean from six individual measurements.
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visible light using SHG and are detected using the same hybrid detectors we use for multiphoton
microscopy. Other approaches have utilized either a dedicated photodiode detector to record
two-photon-induced conductivity19,20 or a fluorescent plate–PMT (photomultiplier tube) detector
combination for recording two-photon-excited fluorescence. We used SHG for this purpose in
our application because it did not require a dedicated diode detector and because SHG has sev-
eral advantages over using a dye in this application. SHG does not have an excited singlet state
(such as fluorescence) and therefore does not have a risk of entering into a triplet state, which can
result in a low quantum yield as compared to an SHG substrate. Furthermore, the dry
NaH2PO4· H2O powder that we use as an SHG substrate is less expensive than most multiphoton
dyes, does not noticeably degrade with time, and therefore does not need to be prepared fresh
before use. Finally, it has been brought to our attention that a commercial autocorrelation system
(Carpe, APE, Berlin, Germany) can measure pulse width at the sample plane of a microscope.
This dedicated instrument employs a vibrating mirror in the delay path with a maximal time
delay window of 15 ps.

5 Conclusion

In conclusion, we have presented a method for observing and analyzing interferometric auto-
correlation measurements of ultrafast laser pulses at the sample plane using the TCSPC tech-
nique. The proposed method has been shown to be able to estimate the zero time delay step value
for these measurements by utilizing the TCSPC technique; this then allows direct access to
the time-resolved SHG traces that interfere with each other. The interferometric autocorrela-
tion measured at the sample plane enables us to estimate the ultrafast laser pulse duration.
Furthermore, our measurements suggest that the 63× objective lens led to more temporal pulse
broadening than the 10× or 40× objective lens. Because this broadening induces altered two-
photon absorption properties, this change should be taken into account when selecting objectives
for 2PM. We anticipate that this method may be very useful in studying multiphoton absorption
properties.

6 Appendix A: Analytical Description of Interferometric Autocorrelation

The interferometric autocorrelation, also referred to as the second-order interferometric autocor-
relation, was introduced for characterizing ultrafast optical pulses by Diels et al.13 In this process,
the input beam is split into two identical parts in which Eðt − τÞ is delayed with respect to EðtÞ
by a delay time τ. These two parts are subsequently combined and colinearly sent into a non-
linear crystal to generate the second-harmonic light of the interference pattern produced by the
combined pulse sequence. With an assumption of a Gaussian beam profile, the electric field of
the laser pulses can be described as

EQ-TARGET;temp:intralink-;e002;116;270EðtÞ ¼ E0ðtÞe−
t2

a2
þiωt; (2)

where ω is the carrier frequency of the electric field and a is the radius in which the amplitude of
the electric field is 1∕e of its maximum amplitude. The equation describing the interferometric
autocorrelation with EðtÞ given by Eq. (2) is

EQ-TARGET;temp:intralink-;e003;116;197IðτÞ ¼
Z∞

−∞

j½EðtÞ þ Eðt − τÞ�2j2dt; (3)

EQ-TARGET;temp:intralink-;e004;116;129IðτÞ ∝ 1þ 2e−
τ2

a2 þ 4e−
3τ2

4a2 cosðωτÞ þ e−
τ2

a2 cosð2ωτÞ: (4)
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