
In-vivo full-field measurement of
microcirculatory blood flow velocity
based on intelligent object
identification

Fei Ye
Songchao Yin
Meirong Li
Yujie Li
Jingang Zhong

Fei Ye, Songchao Yin, Meirong Li, Yujie Li, Jingang Zhong, “In-vivo full-field measurement of
microcirculatory blood flow velocity based on intelligent object identification,” J. Biomed. Opt.
25(1), 016003 (2020), doi: 10.1117/1.JBO.25.1.016003



In-vivo full-field measurement of microcirculatory blood
flow velocity based on intelligent object identification

Fei Ye,a,† Songchao Yin,b,† Meirong Li,b Yujie Li,c and Jingang Zhonga,*
aJinan University, Department of Optoelectronic Engineering, Guangzhou, China
bSun Yat-sen University, Third Affiliated Hospital, Department of Dermatology,

Guangzhou, China
cSun Yat-sen University, Sixth Affiliated Hospital, Reproductive Medicine Center,

Guangzhou, China

Abstract. Microcirculation plays a crucial role in delivering oxygen and nutrients to living
tissues and in removing metabolic wastes from the human body. Monitoring the velocity of
blood flow in microcirculation is essential for assessing various diseases, such as diabetes,
cancer, and critical illnesses. Because of the complex morphological pattern of the capillaries,
both in-vivo capillary identification and blood flow velocity measurement by conventional opti-
cal capillaroscopy are challenging. Thus, we focused on developing an in-vivo optical micro-
scope for capillary imaging, and we propose an in-vivo full-field flow velocity measurement
method based on intelligent object identification. The proposed method realizes full-field blood
flow velocity measurements in microcirculation by employing a deep neural network to auto-
matically identify and distinguish capillaries from images. In addition, a spatiotemporal diagram
analysis is used for flow velocity calculation. In-vivo experiments were conducted, and the
images and videos of capillaries were collected for analysis. We demonstrated that the proposed
method is highly accurate in performing full-field blood flow velocity measurements in micro-
circulation. Further, because this method is simple and inexpensive, it can be effectively
employed in clinics. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JBO.25.1.016003]
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1 Introduction

Microcirculation, the phenomenon of blood circulation in the smallest blood vessels of diameter
10 to 200 μm,1 plays a key role in delivering oxygen and nutrients to living tissues and in remov-
ing metabolic wastes. Monitoring the blood flow in microcirculation helps diagnose various
diseases, such as diabetes, cancer, and other critical illnesses.2–4 By monitoring the microcircu-
lation of skin, the microvascular changes in the morphology and function of the nailfold area of
the finger have been studied.5

Laser Doppler imaging (LDI),6 laser speckle imaging (LSI),7–9 and optical capillaroscopy
(OC)10–12 are the chief techniques currently involved in microcirculation research. However,
these methods possess a few limitations. For example, the LDI can obtain the average changes
in blood flow in large tissues but cannot measure the blood flow velocity of an individual blood
vessel in absolute values. Similarly, the LSI can provide a semiquantitative real-time mapping of
flow fields, but it has to be calibrated. Further, the results are in arbitrary units and are not directly
related to the actual flow values. Moreover, the conventional OC methods, including the frame
difference method and the optical flow method,13,14 can visualize some capillaries under the
nailfold and skin, but their blood flow velocity measurements rely on computer video process-
ing. Calculations in the frame difference method are simple and update quickly; however, this
method is vulnerable to image noise, and the result heavily depends on the threshold selection in
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the algorithm. In addition, when the target is stationary for a long time or the amplitude of the
motion is small, this method does not perform well. The optical flow method, when employed in
detecting moving objects, creates very large amount of data for calculation, and thus, the
real-time performance and practicality are severely affected. Moreover, owing to the low
signal-to-noise ratio of the microcirculation images and the complex morphological pattern
of the capillaries, in-vivo full-field flow velocity measurement of capillaries using the conven-
tional OC methods is challenging.

Machine learning and deep learning have been widely used in image processing.15–25

Traditional machine learning has been successfully applied in detecting blood vessels and meas-
uring blood flow velocity in capillaries of nailfold automatically.21–23 Deep learning that uses
deep neural network (DNN) is a particular kind of machine learning. Compared with traditional
machine learning algorithm, deep learning technology is easier to adapt to different scenarios so
it holds a high potential for application in automatic identification and segmentation of blood
vessels in medical images.18,24,25

A spatiotemporal-diagram-based method has been proposed to perform average blood flow
measurements,26,27 which has the merits of high measurement accuracy, less influence of noise
on the measurement results, and high calculation speeds.

In this research paper, we develop an in-vivo optical microscope with a light source of 420 nm.
In addition, we propose an in-vivo full-field microcirculation velocity measurement (FMVM)
method based on intelligent object identification. The FMVM method combines the DNN model
(for automatic identification of capillaries) and the spatiotemporal diagrammethod (for flow veloc-
ity measurement), to achieve full-field flow velocity measurement of microcirculation. In this
research, the microcirculation images of the face, arm, and other parts of the body were collected
to create a dataset for DNN model training. Furthermore, experiments such as intelligent micro-
circulation identification and segmentation, flow velocity measurement of microcirculation, and in
vivo FMVMs were conducted. The trained DNN model demonstrated superior performance over
the threshold segmentation and frame difference methods, in microcirculation identification and
segmentation. Moreover, the results of the FMVM method were highly accurate and consistent
with those of the direct visual red blood cell tracking (VRBCT) method.

2 Methods and Materials

2.1 Setup

The experimental setup is shown in Fig. 1. The system consists of a custom optical detector. The
optical system comprises two light-emitting diode sources of wavelength 420 nm and power
60 mW, and an image acquisition system. To obtain high contrast images of microcirculation,
an illumination source of wavelength in the strong absorption band of red blood cells (RBCs)

Fig. 1 Schematic representation of the experimental device.
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must be chosen. In general, the light absorption by RBCs is stronger at the wavelength 420 nm,28

which provides a better image contrast than white light. The image acquisition system comprises
a complementary metal-oxide semiconductor camera (Aptina, MT9V024) of resolution
744 × 482 pixels(pixel size of 6 × 6 μm) and framerate 60 fps, a zooming optical system, and
an objective of numerical aperture 0.12. A quartz glass of thickness 1 mm was placed between
the objective and the skin. The skin was covered with a material of refractive index similar to that
of oil to reduce surface reflection. A personal computer (PC) was used to obtain the optical images
and videos. The PC was equipped with a graphic processing unit (NVIDIA 1080Ti) for DNN
training and prediction. A custom-made program was used for flow velocity calculations.

2.2 Principle of Full-Field Microcirculation Velocity Measurement Method

In the object detection field, Liu et al.29 proposed a Single Shot MultiBox Detector (SSD) in
2016, which used a single convolutional neural network to detect the object in an image. In 2017,
Chengcheng et al.30 proposed a method to improve the SSD algorithm to increase its classifi-
cation accuracy without affecting its speed. They adopt the inception block to replace the extra
layers in SSD and called this method inception SSD. The proposed network can catch more
information without increasing the complexity. In this research, SSD_Inception_v2_COCO
(Google), which used the network structure of inception SSD, was used for microcirculation
identification and segmentation.

Transfer learning is the improvement of learning in a new task through the transfer of knowl-
edge from a related task that has already been learned.31 DNNs for complex tasks such as object
detection need to be large and deep, resulting in thousands of parameters. This means that train-
ing such networks requires huge datasets and computational resources, and the training process
might require days or even weeks to complete. Therefore, pretrained model was employed
in this research for microcirculation identification and segmentation. The DNN model,
SSD_Inception_v2_COCO, was pretrained by COCO dataset (Microsoft) and was used to iden-
tify and segment the individual capillaries in this research. We further trained it by microcircu-
lation image dataset in this research.

The microcirculation image dataset was composed of 500 labeled microcirculation images
obtained from 12 volunteers. Further, 420 images were used as the training set and 80 images as
the test set, for training the DNN model. The image resolution was set to 744 × 482 pixels. The
original images were processed according to the following procedure. First, data augmentation
methods, such as flip, random crop and color distortion, and random expansion were utilized in
this experiment to expand the dataset. The total number of images in the data training set was
increased to 6300. Then, an open source software, LabelImg,32 was used for microcirculation
image annotation. The capillaries in the microcirculation images were marked by rectangular
boxes. A text file containing the capillary location information was generated for each original
image using LabelImg. Finally, the original images and the text files of the training set and
test set were transformed into two “TFRecords files” for rapid processing using TensorFlow
(Google). TensorFlow 1.6 under Python 3.6 was used for model training and forecasting.
The training parameters were set as follows: base learning rate—0.01, batch size—10,
moment—0.98, weight decay—0.01, and iterations—12,000. The trained DNN model was then
used to locate the capillaries. If a microcirculation image is transmitted to the neural network, the
location information of all the capillaries can be obtained and marked by rectangular boxes.

Figure 2 shows the schematic representation of FMVM method. The FMVM method
involves three steps to measure the full-field blood flow velocities. First, a random frame of
video was selected and the DNN model was used to identify and segment the individual capil-
laries in the frame. Second, the segmented capillaries were processed by threshold segmentation
to remove the background, and a skeleton was extracted from the microcirculatory vessel to
record the pixel values of the video frames. The skeleton graph extraction method was based
on the Khalid, Marek, Mariusz, Marcin algorithm.33 The pixel values of the skeleton curve were
recorded in one-dimensional (1-D) arrays. The 1-D arrays obtained from the consecutive frames
were transformed into a two-dimensional spatiotemporal diagram. Finally, for all capillaries seg-
mented in the first step, step 2 was repeated. The blood flow velocities of all the capillaries were
thus obtained simultaneously.
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As shown in Fig. 2, the spatiotemporal diagram comprises a straightened skeleton curve with
a series of gray-level points. The horizontal and vertical axes indicate the time and spatial axes,
respectively. The movement of the RBCs leads to a curvilinear trajectory in the spatiotemporal
diagram, and the curvilinear trajectory was connected by a straight line. The slope of the straight
line indicates the velocity of blood flow, and the positive and negative values of the slopes indi-
cate the directions of blood flow. By calculating the slope of all the curvilinear trajectories, the
average flow velocity can be obtained.

It must be noted that the images in the training and test datasets were not used as samples in
the capillary identification and blood flow velocity measurement experiments.

2.3 Materials

The main research object of this study is human skin. A large number of capillaries exist in the
papillary dermis below the skin surface.34 Therefore, the human skin is a window to observe
dynamic microcirculation. The microcirculation diagram of the human skin is shown in Fig. 1.
To obtain the microcirculation images using an optical imaging system, 12 volunteers were
invited. The sampling areas included the arm, face, and other parts the body. Before conducting
the microcirculation image and video acquisition experiments, we treated the imaging region by
ethanol disinfectant (75%). During the acquisition process, we used a fixed bracket to ensure that
the relative position of the optical probe and the sample remained unchanged to avoid any errors
in velocity measurement due to jitter. A total of 500 images of different regions were collected
for the DNN model training and testing, and 10 videos of dynamic microcirculation were
acquired for the blood flow velocity measurement. The volunteers were thoroughly informed
of the objectives of this study, and they provided their written consent. Ethics approval was
granted by the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

3 Results

3.1 Intelligent Identification of Microcirculation

We first evaluated the performance of microcirculation identification by the test dataset. There
were 80 images containing 435 capillaries in the test dataset. The probability of the detection rate
of capillaries is given as Pm_T ¼ Nm_detect_T∕Nm_total; the probability of false positive detection

Fig. 2 Schematic representation of the FMVM method for blood flow velocity measurement in
microcirculation.
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rate of capillaries is given as Pm_F ¼ Nm_detect_F∕Nm_total. In the equation, Nm_total is the number
of total marked capillaries, Nm_detect_T is the number of detected capillaries, and Nm_detect_F

corresponds to the detected mistaken capillaries. The corresponding data are listed in Table 1.
From Table 1, the results clearly indicate that the DNN model has high accuracy in detecting
microcirculation.

Then, we utilized the trained DNN model to conduct intelligent microcirculation identifica-
tion. Figures 3(a) and 3(b) show the results of microcirculation identification using the DNN
model trained by our dataset. The white rectangles in the figures indicate the boundaries of the
capillaries marked by the DNN model. From these figures, it is clear that the DNN model
accurately identified almost all the capillaries. Using the DNN model, all the capillaries can
be automatically and simultaneously segmented in one video frame.

To evaluate the robustness of the proposed approach, we used the threshold method and
frame difference method to separate the individual capillaries from each video frame. Figure 3(c)
shows the results of identification of capillaries in Fig. 3(a) by the threshold segmentation
method. The results indicate that four capillaries were successfully identified, but one was
missed due to the low signal-to-noise ratio of the microcirculation. Figure 3(d) shows the results
of identification of capillaries in Figs. 3(a) and 3(b) by the frame difference method. The results
of Fig. 3(d) clearly show that four capillaries were identified, but one was missed due to low
velocity of blood flow. In the conventional image-processing methods, many complicated sit-
uations must be considered for identification and segmentation of a single capillary. Moreover,
the result is vulnerable to noise.

The DNN model used in this study requires the training set samples to be highly represen-
tative. To obtain more accurate results, maximum number of training samples is required. If the
number of training samples is insufficient, achieving an ideal recognition accuracy is difficult.
The DNN model can be successfully applied in the identification of capillaries on the skin

Table 1 Performance of the test dataset in microcirculation identification.

Nm_total Nm_detect_T Nm_detect_F Pm_T Pm_F

435 400 31 92.0% 7.1%

Fig. 3 Microcirculation identification results using the DNN model, threshold segmentation
method, and frame difference method. (a) and (b) Microcirculation identification by the DNN
model; (c) microcirculation identification by threshold segmentation method; and (d) microcircula-
tion identification by frame difference method.
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surface because the characteristics of these capillaries are clear, as shown in Fig. 1, and these
capillaries are rarely crossed. Therefore, only 420 images of training dataset were in this method
to obtain positive training results.

3.2 Blood Flow Velocity Measurement with Spatiotemporal Diagram Method

To calculate the blood flow velocity of a single capillary, a video of dynamic microcirculation
was obtained from a volunteer. The capillaries were identified and segmented using the DNN
model. Figures 4(a)–4(c) show the results of the blood flow velocity measurement experiments
using the spatiotemporal diagram method. A video frame of the dynamic microcirculation is
shown in Fig. 4(a), which was subjected to background removal as shown in Fig. 4(b). The
white curve in Fig. 4(b) indicates the skeleton of the capillary. The pixel values of the curve
were acquired from the video frames to generate the spatiotemporal image. Figure 4(c) shows
spatiotemporal diagram of the RBCs. Because of the strong absorption characteristic of the
RBCs, their trajectory appears dark in the image. The trajectory was connected by a straight
line. The slope of the straight line represents the flow velocity of the capillary. The dashed lines
in Fig. 4(c) signify the connected straight lines. The average slopes of these lines represent the
average flow velocities. From Fig. 4(c), the average flow velocity was calculated as
∼1.2� 0.1 mm∕s.

We employed the VRBCT method for flow velocity measurement, which is more intui-
tive,4,35,36 to evaluate the accuracy of the spatiotemporal diagram method. Using this method,
the trajectory of the RBCs can be visualized directly from the video frames. By dividing the path
length of the RBCs by time, their flow velocity can be obtained directly. Figures 4(d) and 4(e)
show the trajectories of two RBCs. The time interval of the frames was 33 ms. The dynamic
microcirculation video has been provided as Video 1. RBC1 was tracked and marked by a dashed
circle, as shown in Fig. 4(d)—the velocity of RBC1 was ∼1.0� 0.1 mm∕s, path length was
98 μm, and the time span of displacement was 99 ms. RBC2 was tracked and marked by a
dashed circle, as shown in Fig. 4(e)—the velocity of RBC2 was ∼1.2� 0.1 mm∕s, path length

Fig. 4 Blood flow velocity measurement experiments using the spatiotemporal diagram and
VRBCT methods. (a) A video frame of dynamic microcirculation; (b) capillary and its skeleton
(obtained by background removal); (c) spatiotemporal diagram generated using the skeleton curve
positions obtained from the video frames; (d) and (e) visual tracking of two RBCs (watch Video 1,
20 MB, MP4 [URL: https://doi.org/10.1117/1.JBO.25.1.016003.1]).
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was 114 μm, and the time span of displacement was 99 ms. The results of this method agree well
with those of the spatiotemporal diagram method.

Therefore, both the spatiotemporal diagram and the VRBCT methods can be employed to
measure the flow velocity of blood, and their accuracies are comparable. The VRBCT method
chiefly depends on mental reasoning, whereas the spatiotemporal diagram method eliminates the
need for human intelligence. Therefore, the spatiotemporal diagram method can be effectively
used as an automatic blood flow velocity measurement system.

3.3 Full-Field Flow Velocity Measurements of Microcirculation with Full-Field
Microcirculation Velocity Measurement Method

To verify the feasibility of the in vivo full-field flow velocity measurement of microcirculation,
an experiment was conducted, and a volunteer was invited to participate in the experiment. We
recorded a dynamic microcirculation video of the facial area without injury. Figure 5(a) shows a
video frame of the microcirculation. In Fig. 5(a), (i)–(iv) regions indicate the capillaries iden-
tified by the DNN model. Each capillary region was segmented. To acquire a microcirculation
image with background removal, an individual image was color-reversed (from black to white).
As a result, the capillary image of high pixel values was obtained. The skeleton was extracted
and marked by a red curve as shown in Fig. 5(c). The spatiotemporal diagrams were generated
using the frames of the video, based on the skeleton curves. Figure 5(c) shows the spatiotemporal
diagrams of regions (i)–(iv) in Fig. 5(a). The average flow velocities of the capillaries
(i)–(iv) were acquired from the dark curvilinear trajectories in the spatiotemporal diagrams
as ∼1.2� 0.1, ∼1.4� 0.1, ∼1.3� 0.1, and ∼1.1� 0.1 mm∕s, respectively.

The VRBCT method was employed for flow velocity measurements in this experiment to
verify the accuracy of the FMVM method. The dynamic microcirculation video is provided as
Video 2. The RBCs were tracked in the four capillaries. The trajectories of RBCs were marked
by dashed curves as shown in Fig. 5(d). Using the path length and time span of the RBCs, the
average velocity can be acquired. The average flow velocities of the capillaries calculated by the
VRBCT method were ∼1.1� 0.1, ∼1.2� 0.1, ∼1.2� 0.1, and ∼1.0� 0.1 mm∕s. A compari-
son of the results of these two methods is given in Fig. 5(b). Considering the results of the
VRBCT method as the scale, the average coincidence is 90%.

Fig. 5 In vivo full-field flow velocity measurements of microcirculation. (a) A video frame of micro-
circulation; (b) flow velocity measurement results of the FMVM and VRBCT methods; (c) spatio-
temporal diagrams of capillaries (i)–(iv) [of Fig. 5(a)]; and (d) flow velocity measurements of
regions (i)–(iv) [of Fig. 5(a)] using the VRBCT method by tracking the movements of RBCs.
Dynamic video of multiple capillaries (watch Video 2, 5 MB, MP4 [URL: https://doi.org/10
.1117/1.JBO.25.1.016003.2]).
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Using the FMVM method, the blood flow velocity of each capillary can be acquired. The
statistics, such as the mean and variance of the velocity, can be acquired, which are valuable in
clinical assessments of conditions. Because the capillaries are automatically identified by the
DNN model, a fully automatic flow velocity measurement can be achieved by combining the
DNN model and the spatiotemporal diagram analysis method.

4 Discussion and Conclusion

In this research, we developed an in-vivo optical microscope with a 420-nm light source for
microcirculation imaging and further proposed a blood flow velocity measurement method based
on intelligent object identification. By employing the DNN model, the method achieves high
accuracy of microcirculation identification and flow velocity measurement. The DNN model
was trained using a dataset of microcirculation images obtained from humans, in this study.
The results obtained by employing the DNN model in the microcirculation identification experi-
ment presented higher accuracy of microcirculation identification and segmentation than that by
the threshold method and frame difference method. Further, a flow velocity measurement experi-
ment was conducted using the spatiotemporal diagram method, and the results were consistent
with those of the direct VRBCT method. Finally, an in-vivo full-field microcirculation velocity
experiment was conducted, in which the capillaries were segmented from the whole image using
the DNN model. In addition, the blood flow velocities of the capillaries were calculated using the
spatiotemporal diagram method and the results were compared with those of the direct VRBCT
method. The results showed good agreement with those of the VRBCT method, thereby dem-
onstrating that the proposed FMVM method can be effectively employed for FMVM.
Furthermore, using this method, a few statistics of the flow velocities in the full-field imaging
region, such as mean and variance, can be acquired, which are valuable for clinical assessment of
certain conditions.

In this research, we use deep learning-based vascular recognition to segment microvessels
and use spatial-temporal diagram method to calculate blood flow velocity. Compared with the
traditional machine learning method, the deep learning method in this work can intelligently
identify the microvessels and directly obtain the number and location information of microves-
sels in the field of view, which is very helpful for full-field blood flow velocity measurement. In
the case of small sample size, using a traditional machine learning method will get better results.
In the case of large sample size, using a deep learning method can get better results. Our method
based on deep learning has better adaptability to complex scenes.20

Because the dataset used in this work is small (only 12 volunteers participated in the experi-
ment), the effect of DNN model on microcirculation identification will suffer from overfitting.
Therefore, data augmentation was used to increase the training dataset in this work. To obtain
better adaptability, a larger and wider dataset is needed to train the DNN model. In particular, the
DNN model used in this research was trained only using capillaries that were free of overlap, and
it is not suitable for the condition of overlapped capillaries. In this situation, a larger dataset
containing overlapped capillaries is needed to train the DNN model.

In theory, the upper and lower limits of the FMVM are determined by the frame rate of the
video acquired. A frame rate of 60 fps, length of an observable single microvessel of ∼400 μm,
and optical limit resolution of 0.18 μm (waveform of 420 nm) were used in this study, for which
the upper and lower limits of the flow velocity were obtained as 23.95 and 0.01 mm/s, respec-
tively. The upper and lower limits of the speed measurement system vary based on image sensors
of different frame rates. According to a previous report, the flow velocity range of microcircu-
lation is 0.1 to 2.2 mm/s.37 Therefore, the FMVM method is effective for blood flow velocity
measurement of microcirculation in humans.

The FMVM method performs well when a certain period of time exists between adjacent
RBCs, such that the diagonal streaks in the spatiotemporal diagram are well segmented. This
research did not consider multiple RBCs flowing close to each other, such as sickle cell anemia
case, in its experiments. However, if multiple RBCs flow very closely so that they cannot be
distinguished by the microscope used in this research, they will be recognized as one large RBC
and a wide diagonal will be created in the spatiotemporal diagram, where the slope of diagonal
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will still represent the flow velocity of microcirculation. If the RBCs accumulate and the
diameter after aggregation exceeds the field of view of the microscope, the light and dark
diagonal streaks in the spatiotemporal diagram cannot be produced and the FMVM method will
fail.

In this research, we manually selected the diagonal streaks in the spatiotemporal diagram and
calculated their slopes. If a large flow of RBCs occurs during the recording time frame, the time
required to calculate the velocity of each RBC manually will increase greatly, rendering the
process very cumbersome. This is one of the few limitations of this technology in clinical appli-
cations. However, realizing an automatic straight-line fitting and slope calculation of the diago-
nal streaks in the spatiotemporal diagram are theoretically feasible using image processing,
which will be the objective of our future work.

The FMVM method based on intelligent object identification can potentially avoid the mis-
calculation of microcirculation and provide accurate flow velocity data. This method has been
proved to be applicable to microcirculation of human skin, including face, arm, and other parts.
Moreover, this method is simple and cost effective. Thus, the proposed FMVM method holds
potential for clinical applications, especially in the diagnosis of diabetes and cancer, and for
meticulous observation.
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