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ABSTRACT Significance: Perturbation and differential Monte Carlo (pMC/dMC) methods, used
in conjunction with nonlinear optimization methods, have been successfully applied
to solve inverse problems in diffuse optics. Application of pMC to systems over a
large range of optical properties requires optimal “placement” of baseline conven-
tional Monte Carlo (cMC) simulations to minimize the pMC variance. The inability to
predict the growth in pMC solution uncertainty with perturbation size limits the appli-
cation of pMC, especially for multispectral datasets where the variation of optical
properties can be substantial.

Aim: We aim to predict the variation of pMC variance with perturbation size without
explicit computation of perturbed photon weights. Our proposed method can be
used to determine the range of optical properties over which pMC predictions pro-
vide sufficient accuracy. This method can be used to specify the optical properties
for the reference cMC simulations that pMC utilizes to provide accurate predictions
over a desired optical property range.

Approach: We utilize a conventional error propagation methodology to calculate
changes in pMC relative error for Monte Carlo simulations. We demonstrate this
methodology for spatially resolved diffuse reflectance measurements with ±20%
scattering perturbations. We examine the performance of our method for reference
simulations spanning a broad range of optical properties relevant for diffuse optical
imaging of biological tissues. Our predictions are computed using the variance,
covariance, and skewness of the photon weight, path length, and collision distribu-
tions generated by the reference simulation.

Results: We find that our methodology performs best when used in conjunction with
reference cMC simulations that utilize Russian Roulette (RR) method. Specifically,
we demonstrate that for a proximal detector placed immediately adjacent to the
source, we can estimate the pMC relative error within 5% of the true value for scat-
tering perturbations in the range of ½−15%;þ20%�. For a distal detector placed at ∼3
transport mean free paths relative to the source, our method provides relative error
estimates within 20% for scattering perturbations in the range of ½−8%;þ15%�.
Moreover, reference simulations performed at lower ðμ 0

s∕μaÞ values showed better
performance for both proximal and distal detectors.

Conclusions: These findings indicate that reference simulations utilizing continu-
ous absorption weighting (CAW) with the Russian Roulette method and executed
using optical properties with a low ðμ 0

s∕μaÞ ratio spanning the desired range of μs
values, are highly advantageous for the deployment of pMC to obtain radiative trans-
port estimates over a wide range of optical properties.
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1 Introduction
Monte Carlo simulations have been broadly adopted by the biomedical optics community to
simulate light propagation in scattering tissues on mesoscopic and macroscopic scales; i.e., on
spatial scales comparable to and larger than the single scattering mean free path. Conventional
Monte Carlo (cMC) simulations provide rigorous solutions to the radiative transport equation
and can be configured for systems with complicated geometric and material features. However,
cMC simulations can be computationally costly since this stochastic solver carries with it a
solution uncertainty that scales as 1ffiffiffi

N
p where N is the number of photons simulated.1 Thus,

any application that requires the execution of multiple cMC simulations; e.g., the resolution of
an inverse problem, can easily have an associated computational cost that is impractical given
the number of photons that must be simulated in order to obtain an estimate with sufficiently
low uncertainty.

The computational cost associated with Monte Carlo simulation has motivated many groups
to develop methods to improve its speed and efficiency for simulations of light transport in turbid
media.2 These methods can be generally categorized as follows: lookup table-based MC,3 scaled
or “white” MC,4–8 perturbation MC,9 parallel computing, cloud computing and/or graphic proc-
essor unit (GPU)-based methods10–12 and variance reduction techniques.13 Amongst these, both
lookup table and scaled methods suffer from restrictions to a fixed pre-defined geometry and
prior binning of results that lead to reductions in accuracy.7 Parallel computing and GPU-based
methods accelerate the speed of Monte Carlo simulations using innovations in compilers and
hardware. However, the MC simulation engine remains unchanged, and often existing codes
must be restructured to reap the benefits.

The perturbationMonte Carlo (pMC) method has been developed to rapidly obtain estimates
for systems that are slightly modified, in terms of optical properties and/or geometry, relative to
a reference cMC simulation. Moreover, the pMC framework facilitates implementation of
a ‘sister’ method known as differential Monte Carlo (dMC) that enables the computation of
sensitivities (Jacobian) for the resolution of inverse problems using gradient-based optimization
methods.14–16

The pMC method leverages correlated sampling by using a single set of random walks
for simultaneous analysis of a ‘reference’ system together with any number of closely related
systems which are modified in terms of optical properties and/or geometric characteristics.1

pMC methods enable the rapid computation of RTE solutions for these closely related systems
by post-processing the random walks from a database formed by characteristics of the reference
MC simulation.9,14,17–19 In this database, the weight, path length, and the number of collisions
experienced by each detected photon are stored. pMC analysis modifies the weight of each tallied
photon in the reference database based on its path length and number of collisions and change of
the optical properties relative to the reference system.1,9,20

Several studies have implemented pMC to improve computational efficiency and accuracy
as compared to cMC simulations. Yamamoto and Sakamoto21 used pMC to reconstruct the opti-
cal characteristics of a heterogeneous, two-dimensional tissue model using temporal frequency
domain data. This approach effectively reconstructed both scattering and absorption coefficients.
For diffuse optical tomography applications, Yao et al.22 extended pMC to compute spatially and
temporally resolved sensitivity profiles. A novel method for solving the inverse problem of quan-
titative photoacoustic tomography using pMC was provided in another paper by Leino et al.16

In this study, pMC was shown to be capable of estimating spatial distributions of both absorption
and scattering parameters. These estimated distributions were quantitatively accurate over the full
range of parameter values typical for biological tissues.
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Despite these achievements, challenges remain to broadly apply pMCmethods for the analy-
sis of multispectral datasets. Prior studies have applied pMC to datasets acquired at a single or
small number of wavelengths.9,14,15,17 Given the broad range of optical properties spanned in
multispectral datasets, reference MC simulations for multiple sets of optical properties are likely
needed. Yet, the specific optical property values that should be chosen to minimize the number of
reference simulations required are unknown. While it is known that pMC uncertainty, and there-
fore accuracy, degrades with increases in perturbation size (degree of the tissue optical property
change),20 a general method to quantify the growth in the pMC uncertainty with perturbation size
has not been proposed. Currently, the accuracy of a pMC simulation can only be assessed after
the pMC computation is performed. This is clearly undesirable since we would like to know
a priori, how large a perturbation can be computed from a reference simulation before the
accuracy of the resulting pMC estimate becomes unacceptable.

A priori quantitative prediction of the growth of pMC uncertainty with perturbation size
using data from the reference simulation alone would facilitate the implementation of pMC/
dMC methods. This is because once the reference simulation is performed the growth in pMC
uncertainty with perturbation size could be quantified thereby identifying the range of optical
properties for which the reference simulation could be utilized. This would facilitate the analysis
of multispectral datasets where there are often large variations in optical absorption and scattering
properties. Our first objective in this study is to identify the range of perturbation size that could
be applied to a reference simulation while retaining the pMC estimate variance within a certain
limit. To do so we determine the pMC estimate variance (which is directly related to the pMC
estimate relative error) as a function of perturbation size and optical properties to identify
an acceptable perturbation range for each reference simulation. We then develop a method for
a priori prediction of pMC uncertainty using information from the reference simulation alone
without explicitly computing the perturbed photon weights. This enables the prediction of
the largest perturbation size for which pMC can still be used to provide an estimate with an
acceptable relative error.

2 Method
We start by describing the formulation of pMC and its use to obtain a mean detected photon
weight and associated variance which captures the uncertainty of the mean estimate. Rigorous
computation of the variance associated with a pMC estimate is best obtained by analyzing
the population of perturbed photon weights. These photon weights are determined by post-
processing the database that stores the characteristics of each detected photon from the reference
simulation. Although the photons perturbed weight variance can be accurately calculated for
each perturbation size, our objective is to avoid such rigorous calculations and determine an
accurate variance estimate for a range of perturbation sizes using only data from the reference
simulation. This includes various order moments of weight, the number of collisions, and path
length distributions, along with their corresponding covariance values.

We consider a pMC simulation of a homogeneous semi-infinite tissue whereby the optical
properties of the perturbed system are changed globally. In pMC, the weight of only those pho-
tons that are tallied at the detector under consideration is modified. The perturbed photon weight
for the i’th photon (WP;i) with perturbed optical properties (μa;P; μs;P) is computed from the i’th
photon weight from the reference simulation (WR;i), which utilized reference optical properties
(μa;R; μs;R) as follows:

9

EQ-TARGET;temp:intralink-;e001;117;186WP;i ¼ WR;i

�
μs;P
μs;R

�
ji
exp½−ðμt;P − μt;RÞLi�; (1)

where μs and μt are the scattering and total interaction coefficients (μt ¼ μa þ μs, μa being the
absorption coefficient), respectively, ji is the number of collisions the i’th tallied photon expe-
riences in the medium, and Li is the path length taken by the i’th photon prior to detection.
The subscripts ‘P’ and ‘R’ refer to the perturbed and reference cases, respectively. To generate
a set of perturbed photon weights, Eq. (1) is applied to each photon that is tallied at the detector in
the reference simulation. The variance of the entire population of photon weights σ2WP

, for the
perturbed case is given as
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EQ-TARGET;temp:intralink-;e002;114;736σ2WP
¼ 1

N

XN
i¼1

ðWP;i −WPÞ2; (2)

where N is the total number of photons launched andWP is the mean weight of the population of
photon weights for the perturbed case,WP;i. Our goal is to estimate the variance of the perturbed
photon weights from the reference simulation alone, i.e., without explicitly calculating the
perturbed photon weights needed to apply Eq. (2).

The database obtained from the reference Monte Carlo simulation contains not only the
weight of each photon but also the number of photon collisions and path length. Given that
the photon weights, collisions, and path lengths in MC simulations of radiative transport are
frequently not normally distributed,23 we will examine the utility of applying a classical error
propagation approach inclusive of the second-order (covariance) and third-order (skewness)
terms to estimate the variance associated with the mean perturbed photon weight. Application
of this approach to Eq. (1) provides the following equation to estimate the variance of the
population of perturbed photon weights σ2WP

:24

EQ-TARGET;temp:intralink-;e003;114;552
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In this equation σx and σ2x represent the standard deviation and variance of the random var-
iable x, respectively, shown in Eq. (4a). σx;y represents the covariance between the two random
variables x and y shown in Eq. (4b). γx provides a measure of skewness of the distribution of
the random variable x,25 as defined by Eq. (4c). The product γxσ3x represents the third moment of
the random variable x:

EQ-TARGET;temp:intralink-;e004a;114;394σ2x ¼
1

N

X
ðxi − xÞ2 → σx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ðxi − xÞ2

r
; (4a)

EQ-TARGET;temp:intralink-;e004b;114;344σx;y ¼
1

N

X
ðxi − xÞðyi − yÞ; (4b)

EQ-TARGET;temp:intralink-;e004c;114;316γx ¼
1

N

X�
xi − x
σx

�
3

: (4c)

In general, for a specific detector collecting photons over a finite interval of space, time, and/or
propagation direction, only a subset of the N photons that are simulated are tallied at the detector
(NT) while the remaining photons (NU) go untallied. We thus recast Eq. (2) defining the variance
of the perturbed photon weights WP, in a form that separates contributions of the tallied and
untallied photons to the variance of the perturbed photon weight. As detailed in Section A of
the Supplemental Materials, this reformulation results in the following expression for the vari-
ance of the perturbed estimate:

EQ-TARGET;temp:intralink-;e005;114;212σ2WP
¼ 1

N
½NTðσ2WP;T

þΦ2Þ þ NUW2
P�; (5)

where σ2WP;T
is the variance of the sub-population of photon weights that are tallied at the detector.

Φ ¼ WP −WP;T represents the difference of the mean weight over the entire population of simu-
lated photons (N) and only the population of photons that are tallied at the detector (NT). In this
restructured equation, the contribution of the untallied photon population to the overall variance
is accounted for via the NU

N W2
P term and the impact of the tallied photons is expressed through the

variance of the population of the tallied photon weights alone plus the correction factor NT

N Φ2 that
accounts for the differing sizes of the tallied population and the entire population of simulated
photons.
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The nonlinearities inherent in Eq. (1) can lead to a large dynamic range of the perturbed
photon weights. For this reason, we choose to apply Eq. (3) on the linearized form of Eq. (1) and
estimate the variance of the natural logarithm of the photon weights, σ2

lnðWP;TÞ as follows:

EQ-TARGET;temp:intralink-;e006;117;504 lnðWP;iÞ ¼ lnðWR;iÞ þ ji ln

�
μs;P
μs;R

�
− ðμt;P − μt;RÞLi: (6)

Once σ2
lnðWP;TÞ has been calculated, we estimate σ2WP;T

using:

EQ-TARGET;temp:intralink-;e007;117;450σ2
lnðWP;TÞ ≈

�
∂ðln WP;TÞ
∂WP;T

�
2

σ2WP;T
; (7)

EQ-TARGET;temp:intralink-;e008;117;401σ2WP;T
≈W2

P;T × σ2
lnðWP;TÞ: (8)

Finally, throughout the estimation process, we replace WP with WR to eliminate the need to
calculate the mean perturbed weight. This replacement is expected to provide a reasonable
approximation for small perturbations.

Figure 1 summarizes the conventional process to calculate the pMC variance along with our
proposed process. The conventional process requires performing the pMC computation (steps 2
to 4) for each perturbation size of interest. By contrast, our proposed strategy computes statistical
metrics that characterize the distributions of WR, j, and L from the reference simulation alone
(step 2) from which the pMC variance can be estimated (steps 3 and 4) for any perturbation size
of interest. The equations characterizing the variation of pMC variance with perturbation size and
the accuracy of our pMC variance estimate are presented in Eqs. (9) and (10).

3 Model Problem
To examine the performance of our method, we considered the case of spatially resolved
reflectance in a homogeneous, semi-infinite medium. We performed conventional Monte
Carlo simulations in which 20 million photons are launched from a directional point source
in the reference simulations which utilize continuous absorption weighting (CAW).23 We con-
sider a medium with fixed refractive index (n ¼ 1.4), single-scattering anisotropy (g ¼ 0.8), and
transport mean free path (l� ¼ 1 mm). We consider five different media with different ratios of
reduced scattering to absorption coefficients ðμ 0

s∕μaÞ. Collection of photons happens at
a proximal detector positioned immediately adjacent to the source spanning radial locations
ρ ∈ ½0 to 0.2� mm and a distal detector spanning radial locations ρ ∈ ½3 to 3.2� mm. These two
detectors are chosen to examine the characteristics of the pMC estimates as the collected
signals at these two detectors have differing sensitivities to changes in optical absorption and
scattering.14 As described below, we also performed cMC simulations utilizing the Russian
Roulette method26 with a weight threshold of 10−3 and a survival probability of 0.1. Table 1
provides the optical properties for the five reference cases investigated.

Fig. 1 Schematic representation of the conventional variance calculation and our proposed
variance estimation methods.
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The database resulting from each reference simulation was processed using pMC for scatter-
ing perturbations (ϵs) over the range of ½−20%; 20%� in 5% increments and all other optical
properties were left unchanged. We restricted our analysis to the consideration of scattering
perturbations, since for conventional MC simulations utilizing CAW, perturbations in absorption
can be accommodated without the loss of accuracy regardless of perturbation size.7

We introduce two metrics to characterize pMC performance and our ability to accurately
calculate the pMC relative error using information from the reference MC simulation alone. First,
we define a metric ΔP called the “degradation degree” that quantifies the relative error of a pMC
estimate relative to the reference simulation. Computation of the variation of ΔP with perturba-
tion size (ϵs) enables the examination of the intrinsic accuracy of pMC. We also define δ which
quantifies the relative difference between our estimate for the pMC relative error using infor-
mation from the reference MC simulation alone compared with the actual pMC relative error.
These two metrics are defined as follows:

EQ-TARGET;temp:intralink-;e009;114;408ΔP ¼ σWP
∕WP

σWR
∕WR

; (9)

EQ-TARGET;temp:intralink-;e010;114;356δ ¼ σWP;est − σWP

σWP

; (10)

where WR and WP are the mean photon weight from the reference Monte Carlo simulation and
the pMC simulation, respectively.

4 Results and Discussions
Figure 2 shows the variation in the degradation degree ΔP for the five sets of optical properties
based on rigorous application of pMC calculations for ϵs range of ½−20%; 20%�. The mean and
variance of all the pMC calculations are provided in Section B of the Supplemental Material. For
the proximal detector, we see minimal changes in the pMC relative error as compared with the
reference simulation, with only slight increases observed at scattering perturbations of �20%.
We do see, however, a slight worsening of accuracy for higher values of ðμ 0

s∕μaÞ. The situation is
notably different for the distal detector with much more significant increases in relative error as
compared with the reference simulations for both positive and negative scattering perturbations.
Importantly, we see sharper escalations in pMC relative error for the simulations utilizing larger
values of ðμ 0

s∕μaÞ. Also, in the ϵs range of ½−10%; 10%�, we generally observe that for the refer-
ence simulations performed using larger ðμ 0

s∕μaÞ values, the pMC relative error increases more
sharply for positive scattering perturbations as compared with negative perturbations. Whereas
for reference simulations performed at lower ðμ 0

s∕μaÞ values, the pMC relative error degrades
more sharply for negative perturbations.

These results indicate that the optical properties do not play as prominent role in pMC accu-
racy for the proximal detector as compared with the distal detector, where reference simulations
performed at lower values of ðμ 0

s∕μaÞ result in pMC predictions with much higher fidelity.
Also, since the changes of ΔP relative to ϵs are asymmetric, it appears that positive scattering

Table 1 Optical parameters used for reference MC simulations with
detectors placed at ρ ∈ ½0 to 0.2�mm (proximal) and ρ ∈ ½3 to3.2� mm
(distal), g ¼ 0.8 was used in all simulations.

ðμ 0
s∕μaÞ μa (/mm) μs (/mm) ðμs∕μt Þ

5 0.1667 4.1667 0.9615

10 0.0909 4.5455 0.9804

20 0.0476 4.7619 0.9901

50 0.0196 4.9020 0.9960

100 0.0099 4.9505 0.9980
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perturbations may be more robust in terms of reduced degradation in the pMC relative error for
cases with lower ðμ 0

s∕μaÞ whereas for higher ðμ 0
s∕μaÞ increases in the degradation degree are

smaller for negative scattering perturbations.
To evaluate the accuracy in estimating the pMC relative error from the reference simulation

as compared with a rigorous analysis obtained through conventional process of variance calcu-
lation, in Fig. 3 we display values for the δ metric for all the cases examined.

Our estimation of the pMC relative error based on distribution metrics of the reference sim-
ulation data alone incurs a relative error that generally grows with perturbation size for all refer-
ence cases. Our estimation method shows high fidelity in predicting the pMC relative error for
the proximal detector over a substantial range of ϵs values. On the other hand, for the distal
detector, the range of ϵs values that yield accurate estimates are confined to a much narrower
range of ϵs. Moreover, the growth in relative error is asymmetrical and our method provides
better accuracy for positive scattering perturbations. Figure 3 also shows that our pMC error
estimates are conservative and that we almost invariably provide overestimates of the relative
error. In the case of the proximal detector, our method provides pMC relative error estimates
within 10% of the true value for scattering perturbations in the range of ϵs ¼ �10%. The accu-
racy of our method for the distal detector is notably worse with error estimates within 15% for
scattering perturbations in the range of ϵs ¼ ½−4%; 4%� with much poorer performance outside
this range.

To gain insight into the performance characteristics of our method to estimate pMC relative
error, we examined the distributions of the photon weightWR, number of collisions j, and photon

Fig. 3 Variation of δ with scattering perturbation size ϵs and optical properties ðμ 0
s∕μaÞ.

Fig. 2 Variation of the degradation degree, ΔP, with scattering perturbation size ϵs and optical
properties ðμ 0

s∕μaÞ.
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path length L for both proximal and distal detector locations. The distributions for the reference
cases with ðμ 0

s∕μaÞ of 5 and 100 are shown in Figs. 4 and 5, respectively. Distributions for
the other three cases can be found in Section C of the Supplemental Material.

For both cases shown in Figs. 4 and 5, we observe strongly skewed distributions with long,
sparsely populated tails. This feature is stronger in case of the distal detector for all reference
simulations. Given that the original error propagation formula is based on a Taylor series expan-
sion and assumes that the random variables are normally distributed, the performance of the
estimation provided by Eq. (3) degrades when applied to random variables that deviate from
these conditions.

Fig. 4 Histograms for the detected photons tallying WR, j , and L for the reference simulation per-
formed at ðμ 0

s∕μaÞ ¼ 5. NT = 680,088 and 411,540 for the (a) proximal and (b) distal detector,
respectively.

Fig. 5 Histograms for the detected photons tallying WR, j , and L for the reference simulation
performed at ðμ 0

s∕μaÞ ¼ 100.NT ¼ 817;515 and 405,562 for the (a) proximal and (b) distal detector,
respectively.
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To improve the accuracy of our method, we attempt to reduce the magnitude of the moments
of the photon weight, path length, and collision distributions by utilizing RR26 in our reference
simulations. RR is an unbiased method for terminating simulated photons once their weight falls
below a predefined threshold with a fair game probability. Once a photon’s weight drops below a
specified weight threshold during its propagation, at the next collision its weight is either ampli-
fied by a factor of 1∕p with a survival probability p or terminated with probability (1 − p).

Using this general approach, we selected a weight threshold of 10−3 and a survival prob-
ability of 0.1. Figures 6 and 7 show the distribution of the same random variables shown in
Figs. 4 and 5 after implementation of RR for the reference simulations with ðμ 0

s∕μaÞ of 5 and

Fig. 6 Histograms for the detected photons tallying WR, j , and L for the reference simulation per-
formed at ðμ 0

s∕μaÞ ¼ 5 using RR. NT ¼ 681;805 and 382,485 for the (a) proximal and (b) distal
detector, respectively. Lthr indicates the path length corresponding to the RR weight threshold.

Fig. 7 Histograms for the detected photons tallying WR, j , and L for the reference simulation per-
formed at ðμ 0

s∕μaÞ ¼ 100 using RR. NT ¼ 816;995 and 404,955 for the (a) proximal and (b) distal
detector, respectively. Lthr indicates the path length corresponding to the RR weight threshold.
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100, respectively. Distributions for the other three cases can be found in Section D of the
Supplemental Material. Appearance of discontinuities in the j and L histograms is reflective
of the tallied photon subpopulation that has undergone the RR. Comparison of the histograms
utilizing the RR method with their counterparts in Figs. 4 and 5 illustrates a reduced range of
values for each random variable and more compact and densely populated distributions.

We computed the various moments for the reference simulations both before and after imple-
mentation of RR and analyzed them after normalization to eliminate any dependence on the
actual values. Tables 2 and 3 show the normalized characteristics of the distribution of random
variables corresponding to the reference MC simulations for ðμ 0

s∕μaÞ of 5 and 100, respectively,
before and after applying RR.

Based on these results, the normalized variance for all random variables decreases after
applying RR technique. Similarly, a reduction in normalized covariance (correlation) is observed.
This makes sense since the photon reweighting accomplished by RR weakens the strict depend-
ence between the photon weight and both path length and number of collisions. The skewness of
the random variable distributions also reduced dramatically after using RR. It is also clear that the
reductions are less dramatic for the reference with ðμ 0

s∕μaÞ ¼ 100 compared with ðμ 0
s∕μaÞ ¼ 5.

This is because for ðμ 0
s∕μaÞ ¼ 100, fewer photons undergo RR because of the larger path length

is necessary for the threshold photon weight to be reached.
Using the photon databases generated from these new reference simulations that utilized RR,

we again performed a rigorous calculation of the pMC relative error as well as estimated the
relative error utilizing only the distribution characteristics of the reference simulation data and
our error propagation method. Figure 8 shows the degradation degree metric indicating how
the pMC relative error varies with perturbation size using the RR reference simulations.
These results are comparable to those shown in Fig. 2, which reports the same metric for the
reference simulations that were performed without use of RR.

Figure 9 shows the relative difference δ between our estimate and the actual pMC rela-
tive error.

The utilization of RR clearly improves our ability to estimate pMC relative error using data
from the reference simulation alone. For the proximal detector, the use of RR improves our pMC

Table 2 Normalized variance ðσ2x∕x2Þ, covariance ðσx;y∕σxσy Þ, and skewness γx metrics of
the logarithm of the photon weight [log (WR)], number of photon collisions (j ), and photon path
length (L) for reference MC simulations performed at ðμ 0

s∕μaÞ ¼ 5 before and after applying the
RR method.

cMC cMC with RR

Variable σ2x∕x̄2 σx;y∕σxσy γx Variable σ2x∕x̄2 σx;y∕σxσy γx

Proximal LogðWRÞ 101.9 — −194.8 Proximal LogðWRÞ 7.104 — −8.598

j 65.77 — 194.4 j 4.360 — 8.643

L 101.9 — 194.8 L 7.191 — 8.810

LogðWRÞ, j — −0.999 — LogðWRÞ, j — −0.979 —

LogðWRÞ, L — −1.000 — LogðWRÞ, L — −0.999 —

j , L — 0.999 — j , L — 0.980 —

Distal LogðWRÞ 12.07 — −31.84 Distal LogðWRÞ 0.489 — −1.642

j 13.68 — 40.67 j 0.536 — 1.724

L 13.65 — 40.73 L 0.505 — 1.760

LogðWRÞ, j — −0.988 — LogðWRÞ, j — −0.976 —

LogðWRÞ, L — −0.989 — LogðWRÞ, L — −0.995 —

j , L — 0.999 — j , L — 0.980 —
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relative error estimates most notably for scattering perturbations beyond�8%. With the usage of
RR, we can estimate the pMC relative error within 5% of the true value for scattering perturba-
tions in the range of ½−15%;þ20%�. Our predictions for the distal detector are also notably
improved and the usage of RR provides relative error estimates within 20% for scattering
perturbations in the range of ½−8%;þ15%�. For the distal detector, reference simulation with
ðμ 0

s∕μaÞ ¼ 5 seems to provide the largest range of perturbation for which our approximation
method provides the highest accuracy. While the accuracy of our method is very strong overall
for the proximal detector, we continue to observe poorer performance for higher values of
ðμ 0

s∕μaÞ, which is also the case for the distal detector.
To explain the underlying reasons for this, we should first note that the use of reference

simulations utilizing RR improved the overall pMC error predictions more so for the distal

Table 3 Normalized variance ðσ2x∕x2Þ, covariance ðσx;y∕σxσy Þ and skewness γx metrics of
the logarithm of the photon weight [log (WR)], number of photon collisions (j), and photon path
length (L) for reference MC simulations performed at ðμ 0

s∕μaÞ ¼ 100 before and after applying
the RR method.

cMC cMC with RR

Variable σ2x∕x2 σx;y∕σxσy γx Variable σ2x∕x2 σx;y∕σxσy γx

Proximal LogðWRÞ 47.87 — −84.50 Proximal LogðWRÞ 34.50 — −52.49

j 31.99 — 83.98 j 24.15 — 57.76

L 47.87 — 84.50 L 35.90 — 57.77

LogðWRÞ, j — −0.998 — LogðWRÞ, j — −0.994 —

LogðWRÞ, L — −1.000 — LogðWRÞ, L — −0.997 —

j , L — 0.998 — j , L — 0.997 —

Distal LogðWRÞ 14.62 — −45.00 Distal LogðWRÞ 3.614 — −8.420

j 14.70 — 44.94 j 3.673 — 8.515

L 14.62 — 45.00 L 3.642 — 8.556

LogðWRÞ, j — −1.000 — LogðWRÞ, j — −0.998 —

LogðWRÞ, L — −1.000 — LogðWRÞ, L — −0.999 —

j , L — 1.000 — j , L — 0.998 —

Fig. 8 Variation of the degradation degree, ΔP, with scattering perturbation size ϵs and optical
properties ðμ 0

s∕μaÞ using RR in the reference simulations.
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detector as compared with the proximal detector. Improvement in the prediction accuracy was
observed to be greater for lower values of ðμ 0

s∕μaÞ. These characteristics are expected as photons
collected at the distal detector typically have a larger path length as compared with those
collected at the proximal detector. Moreover, photons propagating in the more highly absorbing
medium, ðμ 0

s∕μaÞ ¼ 5, need only travel a path length of 41 mm before RR is invoked as opposed
to 698 mm for the highly scattering medium of ðμ 0

s∕μaÞ ¼ 100. As a result, for the ðμ 0
s∕μaÞ ¼ 5

medium, 470 and 13,550 photons underwent RR reweighting for the proximal and distal detec-
tor, respectively. By contrast for the ðμ 0

s∕μaÞ ¼ 100 medium, only 40 and 140 of the detected
photons underwent RR reweighting for the proximal and distal detector, respectively.

Taken collectively, our results suggest that reference simulations should be run using the
lowest possible value of ðμ 0

s∕μaÞ since the intrinsic growth of the pMC variance, as reported
by the degradation degree metric ΔP, is minimized. This result is consistent with the theoretical
analysis of Ref. 20 that shows the perturbation range over which pMC estimates can be obtained,
grows as the probability of scattering is decreased. Moreover, it is also reassuring to observe that
our ability to estimate the pMC relative error using reference simulation data alone performs best
for lower ðμ 0

s∕μaÞ values. The results also show that the use of RR reduces the intrinsic variance
of the reference simulations while also improving our ability to accurately estimate the pMC
variance. Moreover, the threshold weight should be chosen to adequately limit excessively long
path lengths that result in distributions of photon weight, path length, and collisions with
extended, sparsely populated tails.

5 Conclusions
In conclusion, we have presented a method to estimate the relative error associated with the use of
perturbation Monte Carlo estimates using distribution metrics of the reference simulation data
alone. This ability reduces pMC computational cost and provides specific guidance for the selec-
tion of optical properties for the placement of reference simulations. Moreover, we have shown
that the use of RR is advantageous in reducing the intrinsic relative error characteristics of refer-
ence simulations used for deriving pMC estimates as well as providing a large improvement in
the perturbation range over which we can predict the relative error. Our results show conclusively
that the range of scattering perturbation while minimizing the growth in the relative error of the
resulting pMC estimates is best accomplished when ðμ 0

s∕μaÞ is low. This result is consistent with
the analysis of Ref. 20 who showed that the allowable perturbation range of pMC grows as the
probability of scattering is decreased. Our results suggest that to utilize pMC for predictions over
a wide range of optical properties, reference simulations should utilize CAWwith optical proper-
ties corresponding to low ðμ 0

s∕μaÞ values over the desired range of μs values. This is because
absorption perturbations can be computed exactly when using CAWand can then be employed to
compute pMC estimates for cases where ðμ 0

s∕μaÞ is large. Finally, we note that the results pro-
vided in this paper represent a “worst case” for the application of pMC in that we perturbed the

Fig. 9 Variation of δ with scattering perturbation size ϵs and optical properties ðμ 0
s∕μaÞ using RR in

the reference simulations.
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properties of the entire medium. However, in most applications, the perturbation will be applied
to only a subdomain of the entire volume being considered. In these cases, we expect that our
methodology will provide accurate results for a larger range of scattering perturbations.

Disclosures
The authors have no conflicts of interest.

Code, Data, and Materials Availability
The MCCL open-source Monte Carlo computation engine was used to generate the results of this
study and can be accessed here: https://virtualphotonics.org/software-mccl.

Acknowledgments
This research was funded, in part, via support from a National Science Foundation Integrative
Graduate Education and Research Traineeship Program (DGE-1144901), University of California,
Irvine Division of Graduate Education and Samueli School of Engineering. The MCCL software
package26 was used to generate the cMC reference simulations and pMC results. Code for
estimation of the pMC variance is available upon request. Some of the results presented in this
paper were previously published in SPIE Proceedings.27

References
1. C. K. Hayakawa, “Perturbation Monte Carlo methods for the solution of inverse problems,” PhD Thesis,

Claremont Graduate University (2002).
2. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5),

050902 (2013).
3. R. J. Hennessy et al., “Monte Carlo lookup table-based inverse model for extracting optical properties from

tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
4. R. Graaff et al., “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4),

426–434 (1993).
5. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte

Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227, (1996).
6. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra

from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
7. M. Martinelli et al., “Analysis of single Monte Carlo methods for prediction of reflectance from turbid

media,” Opt Express 19(20), 19627–19642 (2011).
8. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical proper-

ties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
9. C. K. Hayakawa et al., “Perturbation Monte Carlo methods to solve inverse photon migration problems in

heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337, (2001).
10. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for

high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
11. A. Colasanti et al., “Multiple processor version of a Monte Carlo code for photon transport in turbid media,”

Comput. Phys. Commun. 132(1-2), 84–93 (2000).
12. Q. Fang and S. Yan, “MCX Cloud: a modern, scalable, high-performance and in-browser Monte Carlo

simulation platform with cloud computing,” J. Biomed. Opt. 27(8), 083008 (2022).
13. I. T. Lima, A. Kalra, and S. S. Sherif, “Improved importance sampling for Monte Carlo simulation of

time-domain optical coherence tomography,” Biomed. Opt. Express 2(5), 1069–1081 (2011).
14. I. Seo et al. “Perturbation and differential Monte Carlo methods for measurement of optical properties in

a layered epithelial tissue model,” J. Biomed. Opt. 12(1), 014030 (2007).
15. Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative

estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
16. A. A. Leino et al., “Perturbation Monte Carlo method for quantitative photoacoustic tomography,” IEEE

Trans. Med. Imaging 39(10), 2985–2995 (2020).
17. A. Sassaroli, “Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media,”

Opt. Lett. 36(11), 2095–2097 (2011).
18. J. Nguyen et al., “Development of perturbation Monte Carlo methods for polarized light transport in

a discrete particle scattering model,” Biomed. Opt. Express 7(5):2051–2066 (2016).
19. J. Nguyen et al., “Perturbation Monte Carlo methods for tissue structure alterations,” Biomed. Opt. Express

4(10), 1946–1963 (2013).

Parsanasab et al.: Analysis of relative error in perturbation Monte Carlo. . .

Journal of Biomedical Optics 065001-13 June 2023 • Vol. 28(6)

https://virtualphotonics.org/software-mccl
https://virtualphotonics.org/software-mccl
https://doi.org/10.1117/1.JBO.18.5.050902
https://doi.org/10.1117/1.JBO.18.3.037003
https://doi.org/10.1364/AO.32.000426
https://doi.org/10.1088/0031-9155/41/10/026
https://doi.org/10.1364/JOSAA.24.001011
https://doi.org/10.1364/OE.19.019627
https://doi.org/10.1364/AO.45.001062
https://doi.org/10.1364/OL.26.001335
https://doi.org/10.1117/1.3041496
https://doi.org/10.1016/S0010-4655(00)00138-7
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1364/BOE.2.001069
https://doi.org/10.1117/1.2697735
https://doi.org/10.1117/1.1778733
https://doi.org/10.1109/TMI.2020.2983129
https://doi.org/10.1109/TMI.2020.2983129
https://doi.org/10.1364/OL.36.002095
https://doi.org/10.1364/BOE.7.002051
https://doi.org/10.1364/BOE.4.001946


20. H. Rief, “Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order
Taylor series approach,” Ann. Nucl. Energy 11(9):455–476 (1984).

21. T. Yamamoto and H. Sakamoto, “Frequency domain optical tomography using a Monte Carlo perturbation
method,” Opt. Commun. 364:165–176 (2016).

22. R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical tomography using
perturbation Monte Carlo-based photon “replay”,” Biomed. Opt. Express 9(10), 4588–4603 (2018).

23. C. K. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous
absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media,”
J. Opt. Soc. Am. A 31(2), 301–311 (2014).

24. H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. Nat. Bur. Stand. 70(4), 263–273
(1966).

25. T. V. Anderson and C. A. Mattson, “Propagating skewness and kurtosis through engineering models for
low-cost, meaningful, nondeterministic design,” ASME J. Mech. Des. 134(10), 100911 (2012).

26. C. K. Hayakawa et al., “MCCL: an open-source software application for Monte Carlo simulations of
radiative transport,” J. Biomed. Opt. 27(8), 083005 (2022).

27. M. Parsanasab et al., “Uncertainty analysis in perturbation Monte Carlo simulations of radiative transport,”
Proc. SPIE 12376, 21–25 (2023).

Mahsa Parsanasab is a doctoral student in Chemical and Biomolecular Engineering at
University of California, Irvine. She received both her BS and MS degrees in Polymer
Engineering from Amirkabir University of Technology, Iran, in 2014 and 2016, respectively.
Her research focuses on the effective application of perturbation Monte Carlo to solve forward
and inverse problems involving multispectral datasets acquired using optical diagnostic/imaging
methods.

Carole Hayakawa is an assistant project scientist at University of California, Irvine. She
received her BA degree in applied mathematics from University of California, Berkeley, her
MA degree in mathematics from University of California, Los Angeles, and her PhD in applied
mathematics from Claremont Graduate University.

Jerome Spanier is a faculty researcher at University of California, Irvine (UC Irvine). He
received his BS degree in mathematics from University of Minnesota in 1951, and his MS and
PhD degrees in mathematics from The University of Chicago in 1952 and 1955, respectively.
Following 16 years in industry, he accepted a professorship at the Claremont Graduate School
before moving to UC Irvine in 2000. His research centers on modeling light/tissue interactions
using stochastic and deterministic numerical methods.

Yanning Shen is an assistant professor of Electrical Engineering and Computer Science at UC
Irvine. She received her PhD from University of Minnesota in 2019. Her research interests span
the areas of machine learning, network science, data science, and statistical-signal processing.

Vasan Venugopalan is a professor and chair of Chemical and Biomolecular Engineering at UC
Irvine, and jointly appointed at the Beckman Laser Institute. He received his undergraduate
degree from UC Berkeley, and doctoral degree from MIT, both in Mechanical Engineering.
His research interests lie in modeling and computation of light propagation in biological systems
and the integration of pulsed laser microbeams with nonlinear microscopy to study cellular
mechano-transduction.

Parsanasab et al.: Analysis of relative error in perturbation Monte Carlo. . .

Journal of Biomedical Optics 065001-14 June 2023 • Vol. 28(6)

https://doi.org/10.1016/0306-4549(84)90064-1
https://doi.org/10.1016/j.optcom.2015.11.055
https://doi.org/10.1364/BOE.9.004588
https://doi.org/10.1364/JOSAA.31.000301
https://doi.org/10.6028/jres.070C.025
https://doi.org/10.1115/1.4007389
https://doi.org/10.1117/1.JBO.27.8.083005
https://doi.org/10.1117/12.2650969

