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ABSTRACT. Significance: Hyperspectral imaging (HSI) of murine tumor models grown in dorsal
skinfold window chambers (DSWCs) offers invaluable insight into the tumor
microenvironment. However, light loss in a glass coverslip is often overlooked, and
particular tissue characteristics are improperly modeled, leading to errors in tissue
properties extracted from hyperspectral images.

Aim: We highlight the significance of spectral renormalization in HSI of DSWCmod-
els and demonstrate the benefit of incorporating enhanced green fluorescent protein
(EGFP) excitation and emission in the skin tissue model for tumors expressing
genes to produce EGFP.

Approach: We employed an HSI system for intravital imaging of mice with 4T1
mammary carcinoma in a DSWC over 14 days. We performed spectral renormal-
ization of hyperspectral images based on the measured reflectance spectra of glass
coverslips and utilized an inverse adding–doubling (IAD) algorithm with a two-layer
murine skin model, to extract tissue parameters, such as total hemoglobin concen-
tration and tissue oxygenation (StO2). The model was upgraded to consider EGFP
fluorescence excitation and emission. Moreover, we conducted additional
experiments involving tissue phantoms, human forearm skin imaging, and numerical
simulations.

Results: Hyperspectral image renormalization and the addition of EGFP fluores-
cence in the murine skin model reduced the mean absolute percentage errors
(MAPEs) of fitted and measured spectra by up to 10% in tissue phantoms,
0.55% to 1.5% in the human forearm experiment and numerical simulations, and
up to 0.7% in 4T1 tumors. Similarly, the MAPEs for tissue parameters extracted
by IAD were reduced by up to 3% in human forearms and numerical simulations.
For some parameters, statistically significant differences (p < 0.05) were observed
in 4T1 tumors. Ultimately, we have shown that fluorescence emission could be help-
ful for 4T1 tumor segmentation.

Conclusions: The results contribute to improving intravital monitoring of DWSC
models using HSI and pave the way for more accurate and precise quantitative
imaging.
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1 Introduction
Tumors and their microenvironment must be adequately understood for effective diagnosis and
treatment strategies. The hallmarks of cancer are sustained proliferation, evasion of growth sup-
pressors, resistance to cell death, activation of invasion and metastasis, inflammation, and meta-
bolic specificity.1,2 Tumors are also known to induce angiogenesis, forming irregular and immature
blood vessels that could lead to hyperpermeability, hypoxia, and reduced blood flow within the
tumor.3–6 The complex vasculature poses a significant challenge to various cancer treatments by
creating barriers to drug delivery, fostering aggressive tumor behavior, and decreasing treatment
efficacy, particularly in radiotherapy, chemotherapy, and immunotherapy.7–9 Thus, understanding
these dynamics is crucial in mitigating therapy side effects and improving treatment outcomes.

Dorsal skinfold window chambers (DSWCs) have emerged as indispensable tools in exper-
imental tumor imaging due to their unique capacity to enable real-time, high-resolution imaging
of tumor progression and response to treatment. DSWCs enable intravital visualization of tumor
microvasculature and dynamics, offering insights into vascular morphology, angiogenesis, and
overall tumor growth. The ability to longitudinally track these changes aids in assessing the
efficacy of therapeutic approaches and understanding the underlying mechanisms involved in
tumor development.10–12

DSWCs are usually paired with diagnostic optical imaging methods that detect reflected,
transmitted, or fluorescent light propagating from biological tissues, such as tumors, toward
the light detector. The light interacting with the tissues carries essential information about the
tissue—optical properties that can be determined include tissue absorption (e.g., blood and
melanin content) and scattering (e.g., morphology).13,14

Biomedical hyperspectral imaging (HSI) represents a promising non-invasive and contact-
less optical technique combining imaging and spectroscopy, capturing both spatial and spectral
data in a hyperspectral image (hypercube).15 Thus, the resulting hyperspectral images contain
spectral information within each image pixel. Typically, HSI operates in the visible and near-
infrared spectral bands.16 The imaging system can be configured to work in various modes, cap-
turing reflected, transmitted, or fluorescent light from the investigated biological tissues.15

The hyperspectral image analysis provides valuable diagnostic insights into tissue
physiology, pathology, morphology, and structure. By utilizing the extracted tissue properties,
HSI proves helpful in distinguishing various diseases, such as cancers, heart and circulatory
pathologies, retinal diseases, gastrointestinal diseases, and skin diseases.15,17

Several studies have used HSI to image subcutaneously grown murine tumor models
implanted in DSWCs. The majority of them studied tumor hemodynamics, especially tissue oxy-
genation (StO2), and hypoxia.18–26 Certain studies utilized various tumor treatment approaches
and observed their effect using HSI. Lee et al.22 treated tumors with vascular targeting agents.
Choe et al.24 showcased the enhancement effect of photosensitization on the delivery of a model
therapeutic encapsulated in murine sickle red blood cells. McKee et al.27 treated tumors with the
epidermal growth factor receptor-targeted high-density lipoprotein nanoparticles. Most studies
employing HSI and DSWCs performed longitudinal studies spanning several days,18,22–25,27

whereas some acquired hyperspectral images at a single time point19 or monitored dynamics
in the span of several minutes26 or hours.20

All studies mentioned above determined specific tissue properties (e.g., StO2 or hypoxia
extent) from hyperspectral images based on spectral features of investigated tissues.
However, only selected studies used tumor cells expressing enhanced green fluorescent protein
(EGFP) to localize the tumor and hypoxic regions.18,19,27 Moreover, the HSI of tumors implanted
in DSWCs requires light to pass through a glass coverslip. In reflectance mode,15 the light
traverses the coverslip during illumination (incident light) and after interacting with the tissue
(outgoing light). Due to the imperfect transmission of the glass coverslip, the reflected light
exhibits reduced intensity, resulting in an underestimation of tissue reflectance. Consequently,
this discrepancy impacts the derived values of tissue properties extracted from hyperspectral
images that describe investigated tissues (e.g., tumors).
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This study used a custom-built HSI system integrated with three-dimensional (3D) optical
profilometry (OP) for intravital monitoring of mice with 4T1 mammary carcinomas (from now
on called 4T1 tumors) implanted in the DSWC in a span of 14 days following tumor cell injec-
tion. The main goal of this work is to showcase the importance of renormalizing the hyperspec-
tral images to compensate for the signal loss due to incoming and backscattered light traversing
the glass coverslip in a DSWC to obtain the correct values of tissue properties. Because the 4T1
tumor cells expressed a gene to produce EGFP, our second goal is to show that incorporating
EGFP fluorescence excitation and emission in the skin tissue model improves the performance of
the inverse adding–doubling (IAD) algorithm for the extraction of 4T1 tumor properties from
hyperspectral images. Finally, our third goal is to show that EGFP fluorescence emission could
be helpful for tumor localization and segmentation of 4T1 tumors expressing genes to produce
EGFP. The proposed hyperspectral image renormalization process paves the way for more accu-
rate and precise quantitative imaging by considering and compensating for errors inherent in
experimental procedures. In addition, EGFP fluorescence modeling could enable the automatic
segmentation of tumors expressing EGFP, thereby facilitating image processing and analysis. We
support our findings with additional experiments involving HSI of tissue-mimicking phantoms
and a human forearm skin and numerical simulations. Ultimately, we leverage spectral renorm-
alization to evaluate changes in tissue properties of 4T1 tumors during the course of the experi-
ment and showcase that HSI could help detect tumors at early stages.

2 Methods

2.1 Animal Handling
Animal experiments were conducted at the Department of Experimental Oncology, Institute of
Oncology Ljubljana. This study used seven female inbred Balb/c (BALB/cAnNCrl, Charles
River Laboratories, Wilmington, Massachusetts, United States) mice aged 6 to 8 weeks. The mice
weighed between 18 and 20 g at the beginning of the experiments. During the experiments, they
were housed in a specific pathogen-free environment maintained at 20°C to 24°C temperaturewith a
12-h light–dark cycle and 55%� 10% relative humidity. Food and water were available ad libitum.

Twenty-four hours before the start of the experiment, DSWCs were surgically implanted on
the backs of the mice, as described previously.28 Tumors were grown within DSWCs after sub-
cutaneous injection of 3 × 105 4T1-EGFP mammary carcinoma cells in 100 μl of 0.9% NaCl
saline. When the tumors reached 4 mm in diameter, a gene electrotransfer procedure was
performed, as described previously.29 To follow systemic toxicity, the mice’s body weight was
measured, and behavior was assessed using the mouse grimace scale.30

Approval of all ethical and experimental procedures and protocols in animals was granted by
the Ministry of Agriculture, Forestry and Food of the Republic of Slovenia (permission no.
U34401-3/2022/11). The experimental procedures complied with the European Union (EU)
directive (2010/63/EU) and Animal Research: Reporting of In Vivo Experiments guidelines for
animal experiments.

The sample size of seven mice in this study was carefully chosen, considering the severity of
the DSWCmouse model procedure. By minimizing the number of subjects, we adhered to the 3R
reduction principle.

2.2 Imaging Protocol
Intravital imaging of mice was performed using the integrated HSI and OP system for a period of
14 days, starting on the day of tumor cell injection (day 0), as seen in Fig. 1. Imaging was
performed on days 0, 3 to 7, and 10 to 14. During image acquisition, mice were under 2%
(v∕v) of isoflurane anesthesia (isoflurane, Piramal Healthcare UK Limited, Northumberland,
United Kingdom), and the DSWCs were fixed with a holder to reduce respiratory motion artifacts
[see Fig. 1(c)].

2.3 Imaging System
The HSI system employed in this study is a custom-built integrated imaging system that com-
bines a line-scanning HSI module with a 3D OP module. The system design and validation were
thoroughly described by Stergar et al.31 Briefly, the HSI module spans the spectral range of
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400 to 1000 nm with a spectral resolution of 2.9 nm and a spatial resolution of 100 μm in both the
X and Y directions. The OP module is based on the laser triangulation method with a 405-nm line
laser and achieves an accuracy of 100, 100, and 50 μm in the X, Y, and Z directions, respectively.
The exposure time for a single line acquisition was set to 250 ms.

The integration of the HSI and OP modules enables the acquisition of the 3D surface shape
of the imaged sample and allows for the application of curvature and height corrections to the
hyperspectral images, as previously reported.32 These corrections address signal loss in hyper-
spectral images due to high surface inclination angles and large distances, facilitating reliable
image processing and analysis.33 Multiple checkerboard measurements were conducted at vari-
ous heights to ensure proper alignment of the two modules, resulting in a total image misalign-
ment of less than 100 μm.33

2.4 Image Processing
Raw hyperspectral images are first normalized to obtain reflectance values:15

EQ-TARGET;temp:intralink-;e001;114;274Iref ¼
Iraw − Idark
Iwhite − Idark

: (1)

Here, Iref is the sample reflectance, Iraw is the raw sample intensity, Idark is the dark current
intensity, and Iwhite is the white standard intensity of light.

Then, curvature and height corrections were applied as part of our standard hyperspectral
image preprocessing pipeline to compensate for the signal loss, as presented by Rogelj et al.32,33

Height correction mainly compensated for the tilted glass coverslips that were not completely
parallel with the focal plane of the HSI system during imaging to reduce the specular reflection.
By contrast, curvature correction was negligible because glass coverslip curvature was lower than
2 deg, and the cosine of the angle used for Lambert correction was close to 1. Furthermore, we
performed a 2× spatial binning and 5× spectral reduction to speed up image analysis. The result-
ing processed hyperspectral image was a data cube with 612 × 300 × 61 pixels, of which the 61
spectral points are in the 450 to 750 nm range with a step of 5 nm.

The background (i.e., tissues and other structures outside the DSWCs) was removed from
hyperspectral images by detecting the DSWCs based on their circular shape by first using the
imfindcircles function in MATLAB R2022b (Mathworks, Natick, Massachusetts, United States)

Fig. 1 (a) Schematic representation of a subject (mouse) with a 4T1 tumor growing in a DSWC.
(b) Cross-sectional view of a tumor growing in a DSWC. The light passes through the glass cover-
slip and interacts with the tissue (skin and tumor). Outgoing (reflected, remitted, and fluorescent)
light is captured with the imaging system. (c) Animal experiment setup. The mouse is anesthetized
during imaging, and the DSWC is fixed with a holder.
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and then applying a flood-fill algorithm to remove the ring, as seen in Fig. 2(a). Because the skin
within each DSWC was covered with a 12-mm (in diameter) glass coverslip (GL100, APJ
Trading Co., Ventura, California, United States), we extracted the reflectance properties of two
separate glass coverslips placed on the white reflectance standard (Spectralon, Labsphere Inc.,
North Sutton, New Hampshire, United States), as seen in Fig. 2(b). The average reflectance of the
white standard with GL100 glass coverslips in the spectral range of 450 to 750 nm used for

Fig. 2 (a) Background removal from hyperspectral images (595-nm spectral band) by detecting
DSWCs as circles (left, encircled in red), obtaining a binary mask, and masking out the area out-
side DSWCs (middle). Using a flood-fill algorithm, the DSWC ring was also removed (right).
(b) Background removal from glass coverslip images (left, middle) to obtain the average reflec-
tance properties of the white standard with the coverslips (right) and the corresponding standard
deviations (shaded area). (c) Non-renormalized (top left) and renormalized (top right) 595-nm
spectral band and the corresponding reflectance skin spectra (bottom) for various tissues. The
plotted spectra are taken from the square regions of interest on the spectral band images.
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renormalization is shown in Fig. 2(b) (right) with the accompanying standard deviation values
(shaded area). Given the homogeneous nature of the glass coverslips, with standard deviations
within 1% of the average value, and the fact that the values were derived from over 50,000 spec-
tra, we can reasonably assume the consistency of the spectral properties of glass coverslips.
Although only two GL100 coverslips were tested (N ¼ 2), this sample size is deemed sufficient
because the material is uniform. The homogeneity within individual coverslips suggests that the
variability between different coverslips of the same kind should also be minimal. We could not
obtain the actual transmittance or reflectance values of the glass coverslips from the vendor, but
given our values, the transmittance is higher than 90%, a typical value for glass. Finally, we
renormalized the hyperspectral images to compensate for the signal loss due to incoming and
backscattered light passing through the coverslip. Hyperspectral images are renormalized as

EQ-TARGET;temp:intralink-;e002;114;604Ire ¼
Iref

Icoverslip
; (2)

where Ire is the renormalized sample reflectance, Iref is the sample reflectance obtained from
Eq. (1), and Icoverslip is the average reflectance of the white standard with the coverslips, as seen
in Fig. 2(b) (right). Examples of a 595-nm spectral band [Fig. 2(c), top] and three reflectance skin
spectra before and after renormalization [Fig. 2(c), bottom] are also shown. The same reflectance
spectrum shown in Fig. 2(b) (right) was used for all tissue types as the light loss was consistent
across the entire area covered by the glass coverslip.

2.5 IAD Algorithm
We implemented the IAD algorithm to extract information about tissues from hyperspectral
images. The IAD algorithm was enhanced using a graphics processing unit (GPU) to allow for
fast and accurate light propagation simulation in layered turbid media.34 The accuracy and reli-
ability of IAD for hyperspectral images were thoroughly tested and previously documented,
along with specific details regarding the implementation of the algorithm and tissue modeling.35

In summary, a two-layer model of murine skin, consisting of an upper layer (epidermis) and a
lower layer (dermis), was employed.35 Our original two-layer murine skin model employed 11
tissue parameters to characterize tissue physiology (e.g., melanin volume fraction, deoxy- and
oxyhemoglobin volume fractions, molar concentration of bilirubin, and reduced and oxidized
cytochrome C oxidase), morphology (e.g., scattering coefficient, scattering power, and the frac-
tion of Rayleigh scattered light), and thicknesses of the epidermis and dermis.35,36

The details about epidermis and dermis absorption and tissue scattering were previously
reported.35,36 Importantly, the dermis absorption is calculated as35,36

EQ-TARGET;temp:intralink-;e003;114;315μa;d ¼ fHbμa;Hb þ fHbO2
μa;HbO2

þ fbrubμa;brub þ fCOμa;CO þ fCOO2
μa;COO2

þ μa;base; (3)

where fHb and fHbO2
are volume fractions of deoxy- and oxyhemoglobin, respectively; μa;Hb and

μa;HbO2
are the corresponding absorption coefficients; and fbrub and μa;brub are the molar con-

centration and absorption coefficient of bilirubin, respectively. Moreover, fCO and fCOO2
are

the molar concentrations of reduced and oxidized cytochrome C oxidase, respectively, and
μa;CO and μa;COO2

are the associated absorption coefficients. Finally, μa;base is the baseline
absorption of bloodless skin.

Because the tumor cells expressed a gene to produce EGFP, the dermis absorption
coefficient is adapted to consider EGFP excitation (absorption) and emission:
EQ-TARGET;temp:intralink-;e004;114;191

μa;d ¼ fHbμa;Hb þ fHbO2
μa;HbO2

þ fbrubμa;brub þ fCOμa;CO þ fCOO2
μa;COO2

þ fEGFPexμa;EGFPex − fEGFPemμa;EGFPem þ μa;base: (4)

In Eq. (4), fEGFPex and fEGFPem are the parameters describing the intensity of EGFP excitation
and emission, respectively, and μa;EGFPex and μa;EGFPem are the corresponding absorption coef-
ficients. The emission factor has a negative sign because it does not contribute to absorption but
is a source of outgoing (fluorescent) light.

The underlying absorption spectra for melanin, hemoglobin, and bilirubin were obtained
from a database compiled by Jacques and Prahl,37 also published by Jacques.14 The absorption
spectra for cytochrome C oxidase were obtained from Mason et al.,38 and the EGFP fluorescence
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emission and excitation spectra were obtained from FPbase.39 The hyperspectral images were
fitted with a GPU-accelerated Levenberg–Marquardt algorithm to extract tissue model param-
eters and uncertainties (fitting errors). In the present study, all 11 (or 13 in the case with included
EGFP) tissue model parameters were fitted to determine the total effect of renormalization and
EGFP fluorescence inclusion on the fitting performance. Fitting was performed on a computer
with an Nvidia Titan Xp graphics card with 12 GB RAM, an AMD Ryzen 7 1700X processor,
and 16 GB RAM.

2.6 Glass Coverslips
We acquired the reflectance properties of various glass coverslips from different manufacturers/
vendors to see whether the two GL100 glass coverslips utilized in DSWC models are represen-
tative of other coverslips. The details about glass coverslips are presented in Table 1. The cover-
slips ranged from 12 mm (in diameter), similar to GL100, to microscope cover glasses
(from 18 mm × 18 mm up to 24 mm × 60 mm in size).

2.7 Tissue Phantoms
Furthermore, we utilized different tissue-mimicking phantoms to acquire hyperspectral images
of the phantoms with and without the GLC1 glass coverslip placed on top of the phantoms. The
phantoms were manufactured from resin (Clear Resin v4, Formlabs, Somerville, Massachusetts,
United States) with added titanium dioxide (248576, Sigma-Aldrich, St. Louis, Missouri,
United States) as scatterers and black pigment (Polycraft Silicone Pigment, MB Fibreglass,
Newtownabbey, United Kingdom) as the absorber in different ratios to mimic various biological
tissues. The phantoms were curated to speed up polymerization. The preparation of similar
silicon-based phantoms was previously detailed by Rogelj et al.33

2.8 Human Forearm and Numerical Simulations
We performed an additional experiment in which two hyperspectral images of a single human
forearm were acquired with and without a glass coverslip placed on top of the skin to collect a
sample of data from which we could directly assess the effect of hyperspectral image renorm-
alization. The approval of all ethical and experimental procedures and protocols in humans
was granted by the Commission of the Republic of Slovenia for Medical Ethics (permission
no. 0120-352/2022/3).

Moreover, we performed numerical simulations with the forward adding–doubling algo-
rithm by assuming tissue parameters in Eq. (4) from the literature to create a generic tumor tissue
with typical skin optical properties, including EGFP fluorescence.35 We fitted the acquired hyper-
spectral images of human forearms and generic simulated spectra using the IAD algorithm and
assessed its performance in different scenarios.

Table 1 Glass coverslips used in the study.

Glass coverslip Size/diameter Manufacturer/vendor

GLC1 Φ 12 mm APJ Trading

GLC2 24 mm × 60 mm ibidi

GLC3 18 mm × 18 mm ZEISS

GLC4 24 mm × 24 mm BRAND

GLC5 24 mm × 50 mm Knittel Glass

GLC6 24 mm × 40 mm VWR

GLC7 Φ 11 mm Thermo Scientific

GLC8 18 mm × 18 mm VWR
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2.9 Statistical Testing
To assess the relevance of the hyperspectral image renormalization and EGFP fluorescence mod-
eling, we utilized the Mann–Whitney U-test.40 It is a non-parametric test that compares two
independent groups to determine if there is a statistically significant difference between their
distributions. Unlike parametric tests, it does not assume a normal distribution of the data, mak-
ing it suitable for data that do not meet normality assumptions. It ranks combined data and eval-
uates whether the ranks between groups significantly differ. The U value reflects the number of
times a value from one group is ranked higher than a value from another group. A significant p-
value indicates a difference in distributions between the groups, providing robust evidence of a
statistical difference.

Statistical testing was conducted using the ranksum function in MATLAB R2022b
(Mathworks). The tested data consisted of tissue parameters extracted from either renormalized
or non-renormalized hyperspectral images using the IAD algorithm based on either the 11-
parameter model or the upgraded 13-parameter model. The specific details about the data are
reported together with the results.

3 Results
Sections 3.1 and 3.2 present the results on tissue phantoms to identify the motivation and need for
hyperspectral image renormalization. Section 3.3 supports the results with a simple human fore-
arm experiment, and the motivation for EGFP fluorescence modeling is established based on
numerical simulations. Finally, in Sec. 3.4, the results for the 4T1 tumor models in which bio-
logical variability plays a crucial role are presented, and the benefits of the two proposed meth-
odological procedures are highlighted.

3.1 Glass Coverslips
Figure 3 shows the average reflectance spectra of eight different glass coverslips placed on top of
the white reflectance standard. We observed that values for all coverslips were between 0.9 and
0.96 in the spectral range of 450 to 750 nm and that the spectral properties of all glass coverslips
resembled the properties of GL100 (named GLC1 in Fig. 3). The variability between coverslips
was below 5%, from which we concluded that GL100 used in DSWCs is representative of other
glass coverslips in terms of spectral properties.

3.2 Tissue Phantoms
Figure 4 shows the average reflectance spectra of a PH1 tissue phantom with (in orange) and
without (in blue) glass coverslips placed on top of the phantom. The measurement was repeated
for three different glass coverslips: (a) GLC1 (GL100) utilized in DSWCs, (b) GLC2, and
(c) GLC7. Moreover, Fig. 5 showcases the average reflectance spectra of three different tissue
phantoms: (a) PH1 (resin with more scatterers), (b) PH3 (resin with less scatterers), and (c) PH3
(resin with absorber), with (in orange) and without (in blue) the GLC1 (GL100) glass coverslip
placed on top of the phantom. In both figures, we noticed that the spectra of phantoms with

Fig. 3 Average reflectance properties of various glass coverslips from different vendors placed on
top of the white reflectance standard. GL100 coverslip utilized in DSWCs is presented as GLC1.
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coverslips after spectral renormalization (in yellow) closely matched the measured spectra of the
phantoms without the coverslips (in blue). As the mean absolute percentage errors (MAPEs) of
spectra reduced from ∼10% to below 2% in most cases, we concluded that spectral renormal-
ization compensated for the light loss in the glass coverslips.

3.3 Human Forearm and Numerical Simulations
Similarly, in the human forearm imaging experiment, we observed that the average spectrum of
the hyperspectral image with the coverslip agreed more closely with the no coverslip image (in
blue) after renormalization (in yellow) than before spectral renormalization (in orange), as seen in
Fig. 6(a). This was also reflected in a lower MAPE for both spectra [Fig. 6(b), MAPE reduced by
0.55%] and parameters extracted with the IAD algorithm [Fig. 6(c), MAPE reduced by almost
3%]. The MAPE of parameters was calculated as the mean values of percentage errors for all
fitted parameters. A statistically significant difference (p ¼ 0.021) between the parameters
before and after renormalization was determined using the Mann–Whitney U-test. Statistical
testing was performed on the pixel level, i.e., a dataset of all tissue parameters extracted with
the IAD algorithm from the hyperspectral image of a human forearm before and after renorm-
alization. Those results support our claim that hyperspectral image renormalization improves
IAD performance, especially precision and robustness.

Similarly, for the numerical simulations of a sample 4T1 tumor reflectance spectrum
[Fig. 7(a), dashed curve], we noticed that the agreement between the spectrum fitted with the
13-parameter model (gfp, in orange) and the simulated spectrum (black dashed curve) improved
compared with the one fitted with the original 11-parameter model (orig, in blue). This is also
evident in Fig. 7(b), showing the MAPEs of fitted spectra, which were reduced by ∼1.5%.

Fig. 4 Average reflectance spectra of a PH1 tissue phantom without a glass coverslip (in blue) and
with a glass coverslip placed on top of the PH1 phantom before renormalization (in orange) and
after renormalization (in yellow). The results are shown for three selected coverslips: (a) GLC1
(GL100), (b) GLC2, and (c) GLC7. Insets show the MAPEs of the renormalized spectra of phan-
toms with glass coverslips (in yellow) with respect to the original spectra of phantoms without glass
coverslips (in blue).

Fig. 5 Average reflectance spectra of a tissue phantom without a glass coverslip (in blue) and with
a glass coverslip placed on top of the phantom before renormalization (in orange) and after
renormalization (in yellow). The results are shown for three selected tissue phantoms:
(a) PH1, (b) PH2, and (c) PH3. All phantoms were covered with the GLC1 (GL100) glass coverslip.
Insets show the MAPEs of the renormalized spectra of phantoms with glass coverslips (in yellow)
with respect to the original spectra of phantoms without glass coverslips (in blue).
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Notably, the extracted parameters were also more precise for the 13-parameter model. As seen in
Fig. 7(c), parameter MAPE was reduced by ∼1.5%, and we found a statistically significant differ-
ence (p ¼ 0.046) between the parameter values using the Mann–Whitney test. Statistical testing
was performed on a dataset of all tissue parameters extracted with the IAD algorithm from the
numerically simulated 4T1 tumor reflectance spectrum using the 11-parameter or 13-parameter
model. Although the errors are substantial for the 11-parameter model (orig, in blue), the errors
were reduced considerably for the 13-parameter model (gfp, in orange). Those simulations con-
firm our previous statements that considering EGFP in the murine skin model improves the per-
formance of the IAD algorithm in tumors expressing EGFP.

3.4 Murine Tumor Models
This section describes the results obtained for hyperspectral image fitting using the IAD algo-
rithm for non-renormalized and renormalized [Eq. (2)] hyperspectral images of 4T1 tumors
grown in DSWCs. In both cases, the results are presented for two different skin models: the
original 11-parameter model [Eq. (3)] and the upgraded 13-parameter model incorporating
EGFP fluorescence [Eq. (4)].

Fig. 7 (a) Average simulated (dashed curve) and fitted (solid curves) reflectance skin spectra of a
4T1 tumor. The fitted spectra shown are for the original 11-parameter model (in blue) and the
upgraded 13-parameter model (in orange) incorporating EGFP fluorescence. Insets show the
470- to 520- and 530- to 600-nm spectral ranges. (b) MAPE of fitted and simulated reflectance
skin spectra in the 450- to 750-nm spectral range for both models. (c) MAPE of parameters
extracted by the IAD algorithm using the original and upgraded models. Error bars present the
standard deviations of spectra and parameters.

Fig. 6 (a) Average measured (dashed curves) and fitted (solid curves) reflectance skin spectra of
the human forearm with no coverslip placed on the skin (in blue) and with a coverslip placed on the
skin before renormalization (in orange) and after renormalization (in yellow). The original 11-
parameter model was used for IAD fitting in all cases. Insets show the 470- to 520- and 530-
to 600-nm spectral ranges. (b) MAPE of fitted and measured reflectance skin spectra in the
450- to 750-nm spectral range. (c) MAPE of parameters extracted by the IAD algorithm. The results
for parameters are shown just for the hyperspectral images of the forearm with the coverslips
because the no coverslip parameters were considered ground truth. Error bars present the stan-
dard deviations of spectra and parameters.
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3.4.1 Spectral features

To begin with, Fig. 8(a) shows the average measured reflectance spectra in the 450 to 750 nm
spectral range before (non; grey dashed curves) and after renormalization (re; black dashed curves)
for all tissues (left) and separately for healthy tissues (middle) and tumors (right). The average
spectra were calculated by averaging the spectra of all seven subjects in the study acquired over
the 14-day period, starting on the day of tumor cell inoculation. The healthy tissues comprised all
tissues except for the tumors and the additional 1-mm tumor margins surrounding the tumors. Also
shown in Fig. 8(a) are the fitted spectra for different scenarios: (1) original model, non-renormalized
images (orig–non; in blue); (2) original model, renormalized images (orig–re; in orange);
(3) upgraded model with EGFP, non-renormalized images (gfp–non; in yellow); and (4) upgraded
model with EGFP, renormalized images (gfp–re; in purple). The spectra were averaged across all
subjects and time points to capture an overall effect of the two corrections proposed in this work.

The average IAD-fitted spectra generally agreed well with the average measured spectra [see
Fig. 8(a)]. The most considerable discrepancies between the measured and fitted spectra were in
the 550- to 600-nm spectral interval, below 465 nm, and above 730 nm, as seen in Fig. 8(b),
which shows MAPEs of the fitted spectra. The former could be attributed to higher noise due to
the specific HSI system illumination. The discrepancies were also notable for tumors at around
510 nm (EGFP fluorescence emission). The overall MAPE for different scenarios is presented in
Fig. 8(c). Notably, the MAPE values across all wavelengths were below 4%. Interestingly, the
highest MAPEs and MAPE uncertainties were for the orig–non scenario, followed by orig–re,

Fig. 8 (a) Average measured and fitted reflectance skin spectra before and after renormalization
for all tissues (left column), healthy tissues (middle column), and tumors (right column). The fitted
spectra are shown for the original 11-parameter model (in blue for non-renormalized and orange
for renormalized spectra) and the upgraded 13-parameter model incorporating EGFP (in yellow for
non-renormalized and purple for renormalized spectra). Insets show the 470- to 520- and 530- to
600-nm spectral ranges where EGFP and hemoglobin properties are most pronounced, respec-
tively. (b) MAPE of fitted and measured reflectance skin spectra in the 450- to 750-nm spectral
range. (c) Overall MAPEs for different scenarios and the corresponding standard deviations pre-
sented as error bars. Legend: non, non-renormalized; re, renormalized; orig, original 11-parameter
skin model; gfp, upgraded 13-parameter skin model incorporating EGFP.
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gfp–non, and gfp–re [see Fig. 8(c), left]. This indicates that both renormalization and the addition
of EGFP fluorescence improved the matching of fitted and measured reflectance skin spectra in
mice. For tumors, however, spectral renormalization decreased the fitting performance minorly.
On the other hand, adding EGFP significantly improved the fitting of both non-renormalized and
renormalized hyperspectral images. Although statistical testing was performed with the Mann–
Whitney U-test on the pixel level, i.e., a dataset of all tissue parameters from all subjects on all
days, no statistical significance was found due to the high biological variability between the
subjects and for each subject itself due to tumor progression.

Furthermore, Fig. 9 shows the selected spectral bands (i.e., 510, 635, and 720 nm) obtained
from the hyperspectral image of subject 4 on day 10 with a 4T1 tumor (column 1), the IAD-fitted

Fig. 9 Measured and fitted spectral bands and the corresponding fitting errors for 510-, 635-, and
720-nm spectral bands for (a) non-renormalized and (b) renormalized hyperspectral images of
subject 4 with a 4T1 tumor on day 10. The spectral bands shown here were fitted using the original
11-parameter and the upgraded 13-parameter murine skin model. The corresponding errors pre-
sented are REs. The tumor is delineated with a red dashed line, and the additional 1-mm tumor
margin is with a red dotted line.
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spectral bands (columns 2 and 4), and the corresponding fitting errors (columns 3 and 5) pre-
sented as relative errors (REs). Figure 9(a) presents the results for non-renormalized spectral
bands, and Fig. 4(b) presents the results for renormalized spectral bands. The tumor is delineated
with a red dashed line, and the additional 1-mm tumor margin around the tumor is delineated
with a red dotted line. Subject 4, showcased in Fig. 9 and subsequent figures, was selected as a
representative example of the entire cohort, having a well-developed tumor vasculature and vas-
culature supplying the tumor. As such, it provides insight into the heterogeneous tumor
microenvironment.

In all scenarios, the fitted spectral bands appeared very similar to measured spectral bands,
and the fitting errors were generally below 4%, as already seen in Fig. 8(c). However, the spatial
distribution of errors identified the regions of high fitting uncertainty, predominantly in the blood
vessels due to low reflectance values as a result of high absorption in the blood. There was also a
high error in the tumor region for the two scenarios in which the original model that did not
consider EGFP fluorescence is used [row 1, column 3 in Figs. 9(a) and 9(b)]. However, with
the addition of EGFP fluorescence in the upgraded model, the RE of IAD-fitting reduced sub-
stantially [row 1, column 5 in Figs. 9(a) and 9(b)].

3.4.2 Tissue parameters

Because the renormalization of hyperspectral images and the selection of the skin model affected
the fitting performance of the IAD algorithm, this has also manifested in the tissue parameters
extracted from the hyperspectral images. Figures 10(a) and 10(b) present the color maps of the
total hemoglobin (THB) and StO2 and the corresponding parameter uncertainties (fitting errors)
determined from the non-renormalized and renormalized hyperspectral images for subject 4 with
a 4T1 tumor acquired on day 10, respectively. Although the color maps appeared similar at first
sight, some variations existed for different scenarios. For example, renormalization and EGFP
addition improved the image contrast for this particular subject. Also, the EGFP addition reduced
the RE, especially in the tumor region.

Fig. 10 Color maps of THB and StO2 parameters and the corresponding parameter uncertainties
extracted from (a) non-renormalized and (b) renormalized hyperspectral images of subject 4 with a
4T1 tumor on day 10 using the original 11-parameter and the upgraded 13-parameter murine skin
model. The corresponding parameter uncertainties are presented as REs. The tumor is delineated
with a red dashed line, and the additional 1-mm tumor margin is with a red dotted line.
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Similarly, shown in Figs. 11(b) and 11(c) are the color maps of EGFP fluorescence emission
intensity (fEGFPem ) for the upgraded model before and after renormalization alongside the RGB
image. Note that the original 11-parameter model did not consider the fEGFPem parameter and is
thus not shown. Most notably, the fitting errors in the tumor area were much higher for the renor-
malized image of subject 4 on day 10 than for the non-renormalized image. Also, the fitting
errors in the healthy tissues were very high due to the low fEGFPem parameter values. We can
also see that 4T1 tumor segmentation could be performed based on the fEGFPem parameter,
as the fEGFPem distribution agrees well with the manual segmentations (red dashed lines). A
trained expert performed the manual segmentation of tumors in Fiji41 software based on the
RGB images of tumors extracted from hyperspectral images, as seen in Fig. 11(a). An additional
1-mm tumor margin with a possible tumor spread was also delineated.

Specifically, the fEGFPem parameter distribution could improve the manual tumor segmen-
tations at early stages or enable automatic segmentation, as seen in Fig. 12, which shows the

Fig. 11 (a) RGB image extracted from the hyperspectral image images of subject 4 with a 4T1
tumor on day 10. Color maps of the EGFP fluorescence emission intensity (f EGFPem

) parameter and
the corresponding parameter uncertainties extracted from (b) non-renormalized and (c) renormal-
ized hyperspectral images of a subject with a 4T1 tumor using the upgraded 13-parameter murine
skin model that considered EGFP fluorescence. The corresponding parameter uncertainties are
presented as REs. The tumor is delineated with a red dashed line, and the additional 1-mm tumor
margin is with a red dotted line.

Fig. 12 (a) RGB images and (b) color maps of EGFP fluorescence emission intensity (f EGFPem
)

parameter extracted from renormalized hyperspectral images using the upgraded 13-parameter
murine skin model that considered EGFP fluorescence. The first and second columns are subjects
3 and 7 on day 3, respectively, and the last column is subject 5 on day 5. The tumor is delineated
with a red dashed line, and the additional 1-mm tumor margin is with a red dotted line. White arrows
point at regions where manual segmentations could be improved with the information about
f EGFPem

distribution.
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RGB images and fEGFPem color maps of subject 3 on day 3 (first column), subject 7 on day 3
(second column), and subject 5 on day 5 (last column). White arrows point at regions where a
mismatch was found between the manual tumor segmentations and regions of high fEGFPem inten-
sity and where information about fEGFPem distribution could, therefore, improve the manual seg-
mentations. In most cases, the manual segmentations overestimated the extent of the tumor due to
a conservative approach to delineating tumor margins.

Because we found no statistical significance in Fig. 8(c), where tissue parameters of all
subjects on all days were compared, we focused on the parameters of a single subject on a single
day to reduce inter- and intrasubject variability as much as possible. Figure 13 shows the box
plots of estimated tissue parameters for all tissues (left), healthy tissues (middle), and tumors
(right) for all four scenarios and a single subject (subject 4 on day 10) with a 4T1 tumor.
Importantly, we observed that hyperspectral image renormalization and EGFP fluorescence mod-
eling affected the values of tissue parameters estimated using the IAD algorithm. The most
notable changes were observed for THB, for which the Mann–Whitney U-test confirmed the
statistically significant differences (p < 0.05) for multiple pairs of scenarios, as denoted by aster-
isks (*) in the graphs. Statistical testing was performed on the pixel level, i.e., a dataset of a
specific tissue parameter (e.g., THB) extracted with the IAD algorithm from hyperspectral
images using two scenarios (e.g., orig–non and orig–re), and all pairs of scenarios were tested.
The alteration in the StO2 parameter was generally less pronounced than for THB, except for
tumor tissue. Similar results were obtained for fEGFPem. Box plots of the fEGFPem parameter for the
original model are not shown as the parameter was not considered in the model.

Finally, we leveraged the gfp–re scenario to extract tissue properties of 4T1 tumors and
surrounding healthy tissues over the course of 14 days. Figure 14 shows the changes in baseline
values of (a) THB, (b) StO2, and (c) fEGFPem for tumors and healthy tissues for all subjects
included in the study at different time points. The changes are calculated so that the median
value for healthy tissues on day 0 equals 0%. For all parameters, the longitudinal changes were
more evident for tumors than for healthy tissues. For example, the most considerable changes
from days 0 to 14 were observed for THB (9.9% in tumors and 2.1% in healthy tissues), and the

Fig. 13 Average THB, StO2, and EGFP fluorescence emission intensity (f EGFPem
) value images of

subject 4 with a 4T1 tumor on day 10 for different scenarios. Error bars represent the standard
deviations of parameters. Asterisk (*) shows pairs of parameter values for different scenarios, for
which the Mann–Whitney U-test found a statistically significant difference (p < 0.05). Legend:
non, non-renormalized; re, renormalized; orig, original 11-parameter skin model; gfp, upgraded
13-parameter skin model incorporating EGFP.
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median ΔfEGFPem on day 14 for tumors and healthy tissues was 2.1% and 0.3%, respectively. This
suggests that the optical properties of tumors alter considerably as tumors grow and that the
differentiation between tumors and healthy tissue is improved as the disease progresses, although
the biological variability is high.

4 Discussion
This study highlights the often-overlooked problem with HSI (and optical imaging in general) of
biological tissues monitored within DSWCs. Light impeding on the glass coverslip of a DSWC is
partly specularly reflected off the glass surface, and the majority is transmitted through the glass
and enters the biological tissue, undergoing absorption and scattering. In reflectance imaging
mode, the light interacting with the tissue must exit and pass through the glass coverslip again
before reaching the detector [Fig. 1(b)].

Many imaging systems, including our custom-built HSI system,31 use crossed polarizers to
reduce specular reflection and compensate for the apparent increase in overall reflectance.
However, to the best of our knowledge, no previous study utilizing HSI for DSWC imaging
considered the loss of reflected light due to light passing through the glass coverslip in a DSWC.

In the experiments involving tissue-mimicking phantoms (Figs. 4 and 5), we showed that the
spectral renormalization compensated for the light loss in the glass coverslips by improving the
agreement between the measured spectra of tissue phantoms with and without coverslips, in
which the former underwent spectral renormalization. By measuring the reflectance properties
of various glass coverslips (Fig. 3) and showing that the variations are below 5%, we confirmed
that the results could be generalized to coverslips from different vendors and for different
applications.

With the two additional experiments involving human forearm imaging and numerical sim-
ulations, we supported our findings that hyperspectral image renormalization and EGFP fluo-
rescence modeling improve the agreement of the spectra. Moreover, we demonstrated that the
values of parameters before and after renormalization, as well as before and after the EGFP
addition, were significantly different (p ¼ 0.021 and p ¼ 0.046, respectively). All in all, we
showed that the spectral renormalization of hyperspectral images [see Eq. (2)] based on measured
average reflectance spectra of glass coverslips [see Figs. 2(b) and 2(c)] improved the overall
performance of the IAD algorithm for extracting tissue properties from hyperspectral images.
We also confirmed that the hyperspectral image renormalization could be generalized to other
optical imaging applications involving glass coverslips by measuring the reflectance properties
of coverslips and applying renormalization, as described in Eq. (2). Therefore, the renormaliza-
tion process represents an advancement in quantitative imaging as it considers and compensates
for errors inherent in experimental procedures.

We then applied the hyperspectral image renormalization and EGFP modeling to the murine
tumor models. Although the fitted spectra for all four presented scenarios generally agreed well
with the measured spectra [see Fig. 8(a)], the MAPE and its uncertainty slightly reduced upon
hyperspectral image renormalization, as seen in Fig. 8(c). This could be attributed to a marginal
improvement in the signal-to-noise ratio (SNR) in measured spectra. For renormalized spectra,
the SNR improved by as much as 2 dB (4% of the average value), and the SNR uncertainty
almost halved in some cases. Those results align with our previous findings, showing that adding

Fig. 14 Changes in baseline tissue parameter values of (a) THB, (b) StO2, and (c) EGFP fluo-
rescence emission intensity (f EGFPem

) for healthy tissues (in blue) and tumors (in orange) for all
subjects on days 0, 3, 7, 10, and 14.
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noise to reflectance spectra deteriorates the IAD algorithm performance.35 In the present study,
hyperspectral image renormalization improved the SNR (reduced noise), leading to an enhanced
fitting performance.

However, we noticed that the fitting error in the tumor region was significant, particularly in
the spectral region between 480 and 520 nm, because the 4T1 tumor expressed a gene to produce
EGFP. Although the EGFP excitation (absorption) was less evident, the fluorescence emission
peaking at around 510 nm was highly pronounced in the reflectance spectra of the tumors
[see Fig. 8(a)]. Therefore, we upgraded the original 11-parameter murine skin model to a
13-parameter model that also considered EGFP excitation and emission.

Doing this reduced the relative fitting error in the tumor region by almost 15%, as seen from
510-nm spectral bands in Figs. 9(a) and 9(b). This is because the fitted spectra matching with
measured spectra improved significantly, as seen by comparing the yellow curves with the purple
curves in Fig. 8(a) (right). The original model generally underestimated the reflectance around
the 510-nm emission peak and slightly overestimated it in the 450- to 500-nm spectral region
compared with the upgraded EGFP model. For all wavelengths, the MAPE of spectra decreased
after introducing two additional EGFP-related parameters in the model. The most notable drop in
MAPE was observed in tumors by around 0.7 percentage points from 3.81% (orig–non) to 3.17%
(gfp–re), as seen in Fig. 8(c) (right), which is a 17% relative decrease in MAPE compared to the
baseline value. Those results, in combination with simulations presented in Fig. 7, confirm that
considering EGFP fluorescence in the murine skin model improved the overall performance of
the IAD algorithm. However, the improvement was more notable in simulations (see Fig. 7) than
in murine tumor models due to high biological variability, but it was also statistically significant
in tumor tissue.

Most importantly, adding EGFP fluorescence in the model allowed us to localize the tumor
based on EGFP emission, as seen in Fig. 11. Because the fEGFPem parameter corresponds well
with the manual segmentations (red dashed lines in Fig. 11), fluorescence emission could be used
for 4T1 tumor segmentation. This could prove helpful in two cases: (a) it could aid in manual
tumor segmentation, primarily to determine tumor margins in early days, as demonstrated in
Fig. 12, where white arrows highlight the areas of mismatch between manual segmentations
and high fEGFPem intensity; (b) it could potentially enable the automatic segmentation of tumors
with EGFP fluorescence based on the fEGFPem parameter, which reduces the involvement of a
trained professional and is thus considerably faster and cheaper.

Similarly, Sorg et al.18 and Palmer et al.19 localized 4T1 tumors with the help of fluorescence.
As their tumor cells normally expressed red and green fluorescent proteins in hypoxic regions,
they could also establish the extent of hypoxia in tumors. On the other hand, we could estimate
hypoxia via the StO2 parameter representing tissue oxygenation.36 For example, we noted a
lower StO2 value in the central region of the tumor for the subject in Figs. 10(a) and 10(b),
possibly indicating hypoxia. We also observed increased THB values in the tumor (see
Figs. 10(a) and 10(b)], which could be explained by a higher blood content due to demands
related to tumor growth.1,2

As already mentioned, the performance of the fitting algorithm due to spectral renormal-
ization and EGFP addition is also reflected in the values of tissue properties estimated from the
hyperspectral images, as can be seen in Figs. 10 and 11. For example, the contrast between the
tumor and the surrounding tissue improved for THB and StO2 in Figs. 10(a) and 10(b) in both
scenarios. The numerical values presented for subject 4 on day 10 in Fig. 13 confirmed sta-
tistically significant differences (p < 0.05) between some parameter distributions for different
scenarios, especially for THB. However, the differences were less pronounced due to high tissue
heterogeneity than in the human forearm experiment (Fig. 6) or the numerical simula-
tions (Fig. 7).

Ultimately, we leveraged spectral renormalization and EGFP fluorescence modeling by
evaluating the changes in baseline tissue parameter values of 4T1 tumors and surrounding
healthy tissues over the course of 14 days, as seen in Fig. 14. We observed more pronounced
changes in tumors than in healthy tissues, suggesting that optical properties of tumors change
significantly as they grow and progress. Our results indicate that HSI could help detect tumors as
early as possible based on the changes in blood content and other tumor-specific tissue param-
eters, such as EGFP fluorescence emission intensity. However, the biological variability observed
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is high, as seen in Fig. 14, and additional studies are needed to confirm this claim. As a result
of high biological variability between different subjects and for each subject itself due to
tumor progression, we also found no statistically significant differences in Fig. 8(c), where the
Mann–Whitney U-test was performed on a dataset of all tissue parameters from all subjects on
all days.

Nevertheless, as a sanity check, we attempted to replicate some previously reported results
from the literature. For instance, the mean values of the epidermis and dermis thickness extracted
with the IAD algorithm for all mice were 7.5� 3.3 and 184.2� 46.7 μm, respectively, repro-
ducing results for Balb/c mice by Sabino et al.42

There are certain limitations to this study. We assumed that the light must pass through the
coverslip twice in reflectance mode and then used the average spectrum of two glass coverslips
[Fig. 2(b)] for renormalization. However, fluorescent light due to EGFP only passes through the
coverslip once while impeding on the DSWC (for absorption) or after exiting the tissue (for
emission). Due to our assumption, we slightly overestimated EGFP fluorescence intensity and
normalized reflectance values in the spectral region below 520 nm.

Furthermore, as the tumors grew, they increasingly pressed on the glass coverslip from the
bottom, creating a gap between the surrounding (healthy) tissue and the coverslip. The air filled
the gap in most cases, but inflammation could also occur in tumors. However, we did not account
for this possible refractive index mismatch due to the air pocket between the glass and the skin,
which could affect the amount of light reflected on the detector. Moreover, we did not account for
the differences in refractive indices among various tissue types. However, the refractive index
mismatch is more significant at the air–glass interface than at the glass–biological tissue inter-
face. Therefore, slight variations in tissue refractive indices have a minor impact on hyperspectral
image renormalization.

In addition, the 13-parameter model is disadvantageous in some cases compared with the 11-
parameter model, especially in the absence of EGFP fluorescence in healthy tissue. Because the
model has two additional degrees of freedom, this could lead to less robust spectra fitting and
tissue parameter extraction.

In the future, we propose improving a two-layer murine skin model to incorporate an
additional layer of glass on top of the skin to refine the simulation of DSWCs for enhanced
physiological relevance. Although our study focused on 4T1 tumors growing in DSWCs, the
prospective utilization of this improved model extends to various therapeutic approaches in
which DSWCs are utilized. Specifically, the improved murine skin model could be implemented
for radiotherapy, electrochemotherapy, and reversible electroporation, given the significance of
understanding changes in both tumors and surrounding healthy tissues. Incorporating such a
model holds promise for advancing our understanding of tissue parameters before and after
therapy to optimize treatment strategies and outcomes.

Moreover, we intend to study longitudinal changes in tumor characteristics in more detail in
future investigations as understanding these dynamics could provide valuable insights into tumor
biology.

5 Conclusion
This study introduced a novel approach to intravital monitoring of murine 4T1 mammary
carcinomas grown in DSWCs using a custom-built HSI system. Specifically, the significance
of renormalizing hyperspectral images to compensate for signal loss due to light interacting with
glass coverslips was underscored, and a correction was proposed, providing a methodological
advancement for precise tissue properties extraction using the IAD algorithm. In addition, the
incorporation of EGFP fluorescence properties in the murine skin tissue model demonstrated
enhancement in the performance of the IAD algorithm for hyperspectral image analysis and
could be advantageous for the segmentation of tumors expressing EGFP. The proposed hyper-
spectral image renormalization process helps pave the way to more accurate and precise quan-
titative imaging as it considers and compensates for errors inherent in experimental procedures.
Meanwhile, EGFP fluorescence modeling could enable automatic segmentation of tumors
expressing EGFP and facilitate image processing and analysis. The improvement of HSI with
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proposed methodological refinements holds promise for advancing intravital imaging techniques
in DSWC models, especially for tumor growth monitoring and early detection.
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31. J. Stergar, R. Hren, and M. Milanič, “Design and validation of a custom-made laboratory hyperspectral
imaging system for biomedical applications using a broadband LED light source,” Sensors 22(16), 6274
(2022).

32. L. Rogelj et al., “Curvature and height corrections of hyperspectral images using built-in 3D laser
profilometry,” Appl. Opt. 58(32), 9002–9012 (2019).

33. L. Rogelj et al., “Effect of curvature correction on parameters extracted from hyperspectral images,”
J. Biomed. Opt. 26(9), 096003 (2021).

34. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by
using the adding–doubling method,” Appl. Opt. 32(4), 559 (1993).

35. T. Tomanič, L. Rogelj, and M. Milanič, “Robustness of diffuse reflectance spectra analysis by inverse adding
doubling algorithm,” Biomed. Opt. Express 13(2), 921 (2022).

36. T. Tomanic et al., “Estimating quantitative physiological and morphological tissue parameters of murine
tumor models using hyperspectral imaging and optical profilometry,” J. Biophotonics 16(1), e202200181
(2023).

37. S. L. Jacques and S. A. Prahl, “Assorted spectra,” https://omlc.org/spectra/ (accessed 7 May 2024).
38. M. G. Mason, P. Nicholls, and C. E. Cooper, “Re-evaluation of the near infrared spectra of mitochondrial

cytochrome c oxidase: implications for non invasive in vivo monitoring of tissues,” Biochim. Biophys. Acta
(BBA) - Bioenergetics 1837(11), 1882–1891 (2014).

39. T. Lambert, “EGFP at FPbase,” FPbase, https://www.fpbase.org/protein/egfp/ (accessed 7 May 2024).
40. H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger

than the other,” Ann. Math. Stat. 18(1), 50–60 (1947).
41. J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7),

676–682 (2012).
42. C. P. Sabino et al., “The optical properties of mouse skin in the visible and near infrared spectral regions,”

J. Photochem. Photobiol. B: Biol. 160, 72–78 (2016).

Tadej Tomanic is a researcher at the University of Ljubljana, Faculty of Mathematics and
Physics. He received his BSc and MSc degrees in physics and medical physics from the
University of Ljubljana in 2017 and 2020, respectively, and is currently pursuing a PhD in phys-
ics. His research interests include biomedical hyperspectral imaging, laser speckle contrast im-
aging, and optical profilometry, especially for murine tumor growth monitoring and treatment
response assessment. He is a member of SPIE.

Tim Bozic received his PhD in 2023 from the Institute of Oncology Ljubljana, Department of
Experimental Oncology, where he is currently employed as a researcher. His research interests
include gene therapies, on-chip in vitro models, and the effects of irradiation on natural killer
(NK) cells. His primary research focuses on the interactions of NK cells in the tumor micro-
environment and the optimization of NK cell-based therapies.

Jost Stergar is a researcher at the “Jožef Stefan” Institute, Reactor Physics Department, Medical
Physics Research Group, and the University of Ljubljana, Faculty of Mathematics and Physics,
Medical Physics Research Group. He received his BSc and MSc degrees and his PhD in physics
from the University of Ljubljana, Faculty of Mathematics and Physics in 2013, 2016, and 2021,

Tomanic et al.: Hyperspectral imaging of 4T1 mammary carcinomas grown. . .

Journal of Biomedical Optics 093504-20 September 2024 • Vol. 29(9)

https://doi.org/10.1016/j.jconrel.2013.07.008
https://doi.org/10.1364/BOE.5.001965
https://doi.org/10.1364/OL.40.003292
https://doi.org/10.1142/S179354581250023X
https://doi.org/10.1016/j.bioelechem.2021.107795
https://doi.org/10.1038/nmeth.1455
https://doi.org/10.3390/s22166274
https://doi.org/10.1364/AO.58.009002
https://doi.org/10.1117/1.JBO.26.9.096003
https://doi.org/10.1364/AO.32.000559
https://doi.org/10.1364/BOE.443880
https://doi.org/10.1002/jbio.202200181
https://omlc.org/spectra/
https://omlc.org/spectra/
https://doi.org/10.1016/j.bbabio.2014.08.005
https://doi.org/10.1016/j.bbabio.2014.08.005
https://www.fpbase.org/protein/egfp/
https://www.fpbase.org/protein/egfp/
https://www.fpbase.org/protein/egfp/
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1016/j.jphotobiol.2016.03.047


respectively. His current research interests include biomedical optics, focusing on developing
novel imaging systems; studying light–tissue interaction, including scattering properties; and
developing digital pathology methods to relate microscopic structural properties of tissues to
their macroscopic optical properties.

Gregor Sersa graduated from the Biotechnical Faculty at the University of Ljubljana, where he
is currently a professor of molecular biology. He is the vice head of the Department of
Experimental Oncology and the head of the research group. His field of interest is the effects
of electric fields on cells and tumors for biomedical applications.

Matija Milanic is an associate professor of physics at the University of Ljubljana, Faculty of
Mathematics and Physics, and a researcher at the “Jožef Stefan” Institute. He received his MSc
degree and PhD in physics from the University of Ljubljana, Faculty of Mathematics and
Physics, in 2001 and 2008, respectively. His research interests include light–tissue interactions
and the translation of this knowledge to the clinical and industrial environments.

Bostjan Markelc: Biography is not available.

Tomanic et al.: Hyperspectral imaging of 4T1 mammary carcinomas grown. . .

Journal of Biomedical Optics 093504-21 September 2024 • Vol. 29(9)


