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Abstract. Algorithms for video quality assessment (VQA) aim to estimate the qualities of videos in a manner that
agrees with human judgments of quality. Modern VQA algorithms often estimate video quality by comparing
localized space-time regions or groups of frames from the reference and distorted videos, using comparisons
based on visual features, statistics, and/or perceptual models. We present a VQA algorithm that estimates qual-
ity via separate estimates of perceived degradation due to (1) spatial distortion and (2) joint spatial and temporal
distortion. The first stage of the algorithm estimates perceived quality degradation due to spatial distortion; this
stage operates by adaptively applying to groups of spatial video frames the two strategies from the most ap-
parent distortion algorithm with an extension to account for temporal masking. The second stage of the algorithm
estimates perceived quality degradation due to joint spatial and temporal distortion; this stage operates by meas-
uring the dissimilarity between the reference and distorted videos represented in terms of two-dimensional spa-
tiotemporal slices. Finally, the estimates obtained from the two stages are combined to yield an overall estimate
of perceived quality degradation. Testing on various video-quality databases demonstrates that our algorithm
performs well in predicting video quality and is competitive with current state-of-the-art VQA algorithms. © 2014
SPIE and IS&T [DOI: 10.1117/1.JEI.23.1.013016]
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1 Introduction
The ability to quantify the visual quality of an image or video
is a crucial step for any system that processes digital media.
Algorithms for image quality assessment (IQA) and video
quality assessment (VQA) aim to estimate the quality of a
distorted image/video in a manner that agrees with the qual-
ity judgments reported by human observers. Over the last
few decades, numerous IQA algorithms have been developed
and shown to perform reasonably well on various image-
quality databases. Therefore, a natural technique to VQA
is to apply existing IQA algorithms to each frame of the
video and to pool the per-frame results across time. A key
advantage of this approach is that it is very intuitive, easily
implemented, and computationally efficient. However, such
a frame-by-frame IQA approach often fails to correlate with
the subjective ratings of quality.1,2

1.1 General Approaches to VQA
One reason frame-by-frame IQA performs less well for VQA
is because it ignores temporal information, which is impor-
tant for video quality due to temporal effects, such as tem-
poral masking and motion perception.3,4 Many researchers
have incorporated temporal information into their VQA
algorithms by supplementing frame-by-frame IQA with a
model of temporal masking and/or temporal weighting.5–8

For example, in Refs. 6 and 7, motion-weighting and tem-
poral derivatives have been used to extend structural similar-
ity (SSIM)9 and visual information fidelity (VIF)10 for VQA.

Modern VQA algorithms often estimate video quality
by extracting and comparing visual/quality features from
localized space-time regions or groups of video frames.

For example, in Refs. 11 and 12, video quality is estimated
based on spatial gradients, color information, and the inter-
action of contrast and motion from spatiotemporal blocks;
motion-based temporal pooling is employed to yield the
quality estimate. In Ref. 4, video quality is estimated via
measures of spatial quality, temporal quality, and spatiotem-
poral quality for groups of video frames via a three-dimen-
sional (3-D) Gabor filter-bank; the spatial and temporal
components are combined into an overall estimate of quality.
In Ref. 13, spatial edge features and motion characteristics in
localized space-time regions are used to estimate quality.

Furthermore, it is known that the subjective assessment of
video quality is time-varying,14 and this temporal variation
can strongly influence the overall quality ratings.15,16

Models of VQA that consider these effects have been pro-
posed in Refs. 16 to 19. For example, in Ref. 19, Ninassi
et al. measured temporal variations of spatial visual distor-
tions in a short-term pooling for groups of frames through
a mechanism of visual attention; the global video quality
score is estimated via a long-term pooling. In Ref. 16,
Seshadrinathan et al. proposed a hysteresis temporal pooling
model of spatial quality values by studying the relation
between time-varying quality scores and the final quality
score assigned by human subjects.

1.2 Different Approach for VQA: Analysis of
Spatiotemporal Slices

Traditional analyses of temporal variation in VQA tend
to formulate methods to compute spatial distortion of a
standalone frame,5,7 of local space-time regions,12,13 or of
groups of adjacent frames4,19 and then measure the changes
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of spatial distortion over time. An alternative approach,
which is the technique we adopt in this paper, is to use spa-
tiotemporal slices (as illustrated in Fig. 1), which allows one
to analyze longer temporal variations.20,21 In the context of
general motion analysis, Ngo et al.21 stated that analyzing the
visual patterns of spatiotemporal slices could characterize the
changes of motion over time and describe the motion trajec-
tories of different moving objects. Inspired by this result, in
this paper, we present an algorithm that estimates quality
based on the differences between the spatiotemporal slices
of the reference and distorted videos.

As shown in Fig. 1(a), a video can be envisaged as a rec-
tangular cuboid in which two of the sides represent the spa-
tial dimensions (x and y), and the third side represents the
time dimension (t). If one takes slices of the cuboid from
front-to-back, then the extracted slices correspond to normal
video frames. However, it is also possible to take the slices of
the cuboid from other directions (e.g., from left-to-right or
top-to-bottom) to extract images that contain spatiotemporal
information, hereafter called the STS images. As shown in
Fig. 1(b), if the cuboid is sliced vertically (left-to-right or
right-to-left), then the extracted slices represent time along

(a)

(b)

Fig. 1 A video can be envisaged as a rectangular cuboid in which two of the sides represent the spatial
dimensions (x and y ), and the third side represents the time dimension (t ). If one takes slices of the
cuboid from front-to-back, then the extracted slices correspond to normal video frames. Slicing the cuboid
vertically and horizontally yields spatiotemporal slice images (STS images). Examples of three different
slice types are presented in part (b) of the figure.
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one dimension and vertical space along the other dimension,
hereafter called the vertical STS images. If the cuboid is
sliced horizontally (top-to-bottom or bottom-to-top), then
the extracted slices represent time along one dimension
and horizontal space along the other dimension, hereafter
called the horizontal STS images.

Figure 2 shows examples of STS images from some typ-
ical videos. At one extreme, if the video contains no changes
across time (e.g., no motion, as in a static video), then the
STS images will contain only horizontal lines [see Fig. 2(a)]
or only vertical lines [see Fig. 2(b)]. In both Figs. 2(a) and
2(b), the perfect temporal relationship in the video content
manifests as perfect spatial relationship along the dimension
that corresponds to time in the STS images. At the other
extreme, if the video is rapidly changing (e.g., each frame
contains vastly different content), the STS images will
appear as random patterns. In both Figs. 2(c) and 2(d),
the randomness of temporal content in the video manifests
as spatially random pixels along the dimension that corre-
sponds to time in the STS images. The STS images for nor-
mal videos [Figs. 2(e) and 2(f)] are generally well structured
due to the joint spatiotemporal relationship of neighboring
pixels and the smooth frame-to-frame transition.

The STS images have been effectively used in a model of
human visual-motion sensing,22 in energy models of motion
perception,23 and in video motion analysis.20,21 Here, we
argue that the temporal variation of spatial distortion is
exhibited as spatiotemporal dissimilarity in the STS images,
and thus, these STS images can also be used to estimate
video quality. To illustrate this, Fig. 3 shows sample STS
images from a reference video (reference STS image) and
from a distorted video (distorted STS image), where some

dissimilar regions are clearly visible in the close-ups. As
we will demonstrate, by quantifying the spatiotemporal dis-
similarity between the reference and distorted STS images, it
is possible to estimate video quality.

Figure 4 shows sample STS images from two distorted
videos of the LIVE video database24 and the normalized
absolute difference images between the reference and dis-
torted STS images. The associated estimates PSNRsts and
MADsts are computed by applying peak SNR (PSNR)25

and the most apparent distortion (MAD) algorithm26 to
each pair of the reference and distorted STS images and
by averaging the results across all STS images. The higher
the PSNRsts value, the better the video quality; and the lower
the MADsts value, the better the video quality. As seen from
Fig. 4, the PSNRsts and MADsts values show promise for
VQA by comparing the STS images, whereas the frame-
by-frame MAD fails to predict the qualities of these videos.
However, it is important to note that, although PSNR and
MAD show promise when applied to the STS images, neither
PSNR nor MAD were designed for use with STS images. In
particular, PSNR and MAD do not account for the responses
of the human visual system (HVS) to temporal changes of
spatial distortion. Consequently, PSNRsts and MADsts can
yield predictions that correlate poorly with mean opinion
score (MOS)/ difference mean opinion score (DMOS). Thus,
we propose an alternative method of quantifying degrada-
tion of the STS images via a measure of correlation and
a model of motion perception.

1.3 Proposal and Contributions
In this paper, we propose a VQA algorithm that esti-
mates video quality by measuring spatial distortion and

Fig. 2 Demonstrative STS images extracted from a static video [(a) and (b)], from a video with a vastly
different content for each frame [(c) and (d)], and from a typical normal natural video [(e) and (f)]. The STS
images for the atypical videos in (a) to (d) appear similar to textures, whereas the STS images for normal
videos are generally smoother and more structured due to the joint spatial and temporal (spatiotemporal)
relationship.
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spatiotemporal dissimilarity separately. To estimate per-
ceived video quality degradation due to spatial distortion,
both the detection-based strategy and the appearance-
based strategy of our MAD algorithm are adapted and
applied to groups of normal video frames. A simple model
of temporal weighting using optical-flow motion estimation
is employed to give greater weights to distortions in the slow-
moving regions.5,18 To estimate spatiotemporal dissimilarity,
we extend the models of Watson–Ahumada27 and Adelson–
Bergen,23 which have been used to measure energy of motion
in videos, to the STS images and measure the local variance
of spatiotemporal neural responses. The spatiotemporal
response is measured by filtering the STS image via one
one-dimensional (1-D) spatial filter and one 1-D temporal
filter.23,27 The overall estimate of perceived video quality
degradation is given by a geometric mean of the spatial dis-
tortion and spatiotemporal dissimilarity values.

We have named our algorithm ViS3 according to its two
main stages: the first stage estimates video quality degrada-
tion based on spatial distortion (ViS1), and the second stage
estimates video quality degradation based on the dissimilar-
ity between spatiotemporal slice images (ViS2). The final
estimate of perceived video quality degradationViS3 is a com-
bination ofViS1 andViS2. TheViS3 algorithm is an improved
and extended version of our previous VQA algorithms pre-
sented in Refs. 28 and 29. We demonstrate the performance
of this algorithm on various video-quality databases and com-
pare to some recent VQA algorithms. We also analyze the
performance of ViS3 on different types of distortion by meas-
uring its performance on each subset of videos.

The major contributions of this paper are as follows. First,
we provide a simple yet effective extension of our MAD
algorithm for use in VQA. Specifically, we show how to
apply MAD’s detection- and appearance-based strategies
to groups of video frames and how to modify the combina-
tion to take into account temporal masking. This contribution
is presented in the first stage of the ViS3 algorithm. Second,
we demonstrate that the spatiotemporal dissimilarity exhib-
ited in the STS images can be used to effectively estimate
video quality degradation. We specifically provide in the sec-
ond stage of the ViS3 algorithm a technique to quantify the
spatiotemporal dissimilarity by measuring spatiotemporal
correlation and by applying an HVS-based model to the
STS images. Finally, we demonstrate that a combination of
the measurements obtained from these two stages is able to
estimate video quality quite accurately.

This paper is organized as follows. In Sec. 2, we provide
a brief review of current VQA algorithms. In Sec. 3, we
describe details of the ViS3 algorithm. In Sec. 4, we present
and compare the results of applying ViS3 to different video
databases. General conclusions are presented in Sec. 5.

2 Brief Review of Existing VQA Algorithms
In this section, we provide a brief review of current VQA
algorithms. Following the classification specified in Ref. 30,
current VQA methods can roughly be divided into four
classes: (1) those that employ IQA on a frame-by-frame
basis, (2) those that estimate quality based on differences
between visual features of the reference and distorted videos,
(3) those that estimate quality based on statsitical differences

Fig. 3 Demonstrative STS images extracted from the reference and distorted videos. The close-ups
show some dissimilar regions between the STS images.
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between the reference and distorted videos, and (4) those that
attempt to model one or more aspects of the HVS.

2.1 Frame-by-Frame IQA
As stated in Sec. 1, the most straightforward technique to
estimate video quality is to apply existing IQA algorithms
on a frame-by-frame basis. These per-frame quality estimates
can then be collapsed across time to predict an overall quality
estimate of the video. It is common to find these frame-by-
frame IQA algorithms used as a baseline for comparison,24,31

and some authors implement this technique as a part of
their VQA algorithms.32,33 However, due to the lack of tem-
poral information, this technique often fails to correlate with
the perceived quality measurements obtained from human
observers.

2.2 Algorithms Based on Visual Features
An approach commonly used in VQA is to extract spatial
and temporal visual features of the videos and then estimate
quality based on the changes of these features between the
reference and distorted videos.11,12,34–40

One of the earliest approaches to feature-based VQAwas
proposed by Pessoa et al.34 Their VQA algorithm employs
segmentation along with segment-type-specific error mea-
sures. Frames of the reference and distorted videos are
first segmented into smooth, edge, and texture segments.
Various pixel-based and edge-detection-based error mea-
sures are then computed between corresponding regions
of the reference and distorted videos for both the luminance
and chrominance components. The overall estimate of
quality is computed via a weighted linear combination of
logistic-normalized versions of these error measures, using

Fig. 4 Sample STS images and their absolute difference STS images (relative to the STS images of
the reference videos) extracted from videos (a) pa2_25fps.yuv and (b) pa8_25fps.yuv for vertical STS
images (upper row) and for horizontal STS images (lower row). The videos are from the LIVE video
database.24 The values obtained by applying frame-by-frame most apparent distortion (MAD) on normal
(front-to-back) frames are shown for comparison. The PSNRsts and MADsts values, which are computed
from the STS images, show promise in estimating video quality. However, neither peak SNR nor MAD
account for human visual system responses to temporal changes of spatial distortion, and thus we
propose an alternative method of quantifying degradation of the STS images.
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segment-category-specific weights, collapsed across all seg-
ments and all frames.

One of the most popular feature-based VQA algorithms,
called the video quality metric (VQM), was developed by
Pinson and Wolf.11,12 The VQM algorithm employs quality
features that capture spatial, temporal, and color-based
differences between the reference and distorted videos.
The VQM algorithm consists of four sequential steps. The
first step calibrates videos in terms of brightness, contrast,
and spatial and temporal shifts. The second step breaks
the videos into subregions of space and time, and then
extracts a set of quality features for each subregion. The
third step compares features extracted from the reference
and distorted videos to yield a set of quality indicators.
The last step combines these indicators into a video quality
index.

Okamoto et al.35 proposed a VQA algorithm that operates
based on the distortion of edges in both space and time.
Okamoto et al. employ three general features: (1) blurring
in edge regions, which is quantified by using the average
edge energy difference described in ANSI T1.801.03;
(2) blocking artifacts, which are quantified based on the
ratio of horizontal and vertical edge distortions to other
edge distortions; and (3) the average local motion distortion,
which is quantified based on the average difference between
block-based motion measures of the reference and distorted
frames. The overall video quality is estimated via a weighted
average of these three features.

In Ref. 36, Lee and Sim propose a VQA algorithm that
operates under the assumption that visual sensitivity is great-
est near edges and block boundaries. Accordingly, their
algorithm applies both an edge-detection stage and a block-
boundary detection stage to frames from the reference video
to locate these regions. Separate measures of distortion
for the edge regions and block regions are then computed
between the reference and distorted frames. These two fea-
tures are supplemented with a gradient-based distortion mea-
sure, and the overall estimate of quality is then obtained via
a weighted linear sum of these three features averaged across
all frames.

In the context of packet-loss scenarios, Barkowsky et al.37

designed the TetraVQM algorithm by adding a model of
temporal distortion awareness to the VQM algorithm. The
key idea in TetraVQM is to estimate the temporal visibility
of image areas and, therefore, weight the degradations in
these areas based on their durations. TetraVQM employs
block-based motion estimation to track image objects over
time. The resulting motion vectors and motion-prediction
errors are then used to estimate the temporal visibility, and
this information is used to supplement VQM for estimating
the overall quality. In Ref. 39, Engelke et al. demonstrated
that significant improvements to VQM and TetraVQM can
be realized by augmenting these techniques with information
regarding visual saliency.

Various features have also been combined via machine-
learning for improved VQA. In Ref. 8, Narwaria et al. pro-
posed the temporal quality variation (TQV) algorithm, a low-
complexity VQA algorithm that employs a machine-learning
mechanism to determine the impact of the spatial and tem-
poral factors as well as their interactions on the overall video
quality. Spatial quality factors are estimated by a singular
value decomposition (SVD)-based algorithm,41 and the

temporal variation of spatial quality factors is used as a fea-
ture to estimate video quality.

2.3 Algorithms Based on Statistical Measurements
Another class of VQA algorithms has been proposed that
estimate quality based on differences in statistical features
of the reference and distorted videos.5–7

In Ref. 5, Wang et al. proposed the video structural sim-
ilarity (VSSIM) index. VSSIM computes various SSIM9

indices at three different levels: the local region level, the
frame level, and the video sequence level. In the local region
level, the SSIM index of each region is computed for
the luminance and chrominance components, with greater
weight given to luminance component. These SSIM indices
are weighted by local luminance intensity to yield the frame-
level SSIM index. Finally, at the sequence level, the frame
SSIM index is weighted by global motion to yield an esti-
mate of video quality.

Another extension of SSIM to VQA, called speed SSIM,
was also proposed by Wang and Li.6 There, they augmented
SSIM9 with an additional stage that employs Stocker and
Simoncelli’s statistical model42 of visual speed perception.
The speed perception model is used to derive a spatiotem-
poral importance weight function, which specifies a relative
weighting at each spatial location and time instant. The over-
all estimate of video quality is obtained by using this weight
function to compute a weighted average of SSIM over all
space and time.

In Ref. 7, Sheikh and Bovik augmented the VIF IQA
algorithm10 for use in VQA. VIF estimates quality based
on the amount of information that the distorted image
provides about the reference image. VIF models images as
realizations of a mixture of marginal Gaussian densities of
wavelet subbands, and quality is then determined based
on the mutual information between the subband coefficients
of the reference and distorted images. To account for motion,
V-VIF quantifies loss in motion information by measuring
deviations in the spatiotemporal derivatives of the videos,
the latter of which are estimated by using separable bandpass
filters in space and time.

Tao and Eskicioglu33 proposed a VQA algorithm that esti-
mates quality based on SVD. Each frame of the reference and
distorted videos are divided into 8 × 8 blocks, and then the
SVD is applied to each block. Differences in the SVDs of
corresponding blocks of the reference and distorted frames,
weighted by the edge-strength in each block, are used to
generate a frame-level distortion estimate. Both luminance
and chrominance SVD-based distortions are combined via
a weighted sum. These combined frame-level estimates are
then averaged across all frames to derive an overall estimate
of video quality.

Peng et al. proposed a motion-tuned and attention-guided
VQA algorithm based on a space-time statistical texture rep-
resentation of motion. To construct the spacetime texture rep-
resentation, the reference and distorted videos are filtered via
a bank of 3-D Gaussian derivative filters at multiple scales
and orientations. Differences in the energies within local
regions of the filtered outputs between the reference and dis-
torted videos are then computed along 13 different planes in
space-time to define their temporal distortion measure. This
temporal distortion measure is then combined with a model
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of visual saliency and multiscale SSIM43 (averaged across
frames) to estimate quality.

2.4 Algorithms Based on Models of Human Vision
Another widely adopted approach to VQA is to estimate
video quality via the use of various models of the HVS.4,44–,55

One of the earliest VQA algorithms based on a vision
model was developed by Lukas and Budrikis.44 Their tech-
nique employs a spatiotemporal visual filter that models
visual threshold characteristics on uniform backgrounds.
To account for nonuniform backgrounds, the model is sup-
plemented with a masking function based on the spatial and
temporal activities of the video.

The digital video quality algorithm, developed by Watson
et al.,49 also models visual thresholds to estimate video
quality. The authors employ the concept of just noticeable
differences (JNDs), which are computed via a discrete cosine
transform (DCT)-based model of early vision. After sam-
pling, cropping, and color conversion, each 8 × 8 block of
the videos is transformed to DCT coefficients, converted
to local contrast, and filtered by a model of the temporal con-
trast sensitivity function. JNDs are then measured by divid-
ing each DCT coefficient by its respective visual threshold.
Contrast masking is estimated based on the differences
between successive frames, and the masking-adjusted differ-
ences are pooled and mapped to a visual quality estimate.

Other HVS-based approaches to VQA have employed
various subband decompositions to model the spatiotempo-
ral response properties of populations of visual neurons,
which are assumed to underlie the multichannel nature of
the HVS.4,45–47,53,55 These algorithms generally compute
simulated neural responses to the reference and distorted vid-
eos and then estimate quality based on the extent to which
these responses differ.

The moving picture quality metric algorithm, proposed by
Basso et al.,45 employs a spatiotemporal multichannel HVS
model by using 17 spatial Gabor filters and two temporal
filters on the luminance component. After contrast sensitivity
and masking adjustments, distortion is measured within each
subband and pooled to yield the quality estimate. The color
MPQM algorithm, proposed by Lambrecht,46 extends and
applies the MPQM algorithm to both luminance and chromi-
nance components with a reduced number of filters for the
chrominance components (nine spatial filters and one tem-
poral filter).

The normalization video fidelity metric algorithm, pro-
posed by Lindh and Lambrecht,47 implements a visibility
prediction model based on the Teo–Heeger gain-control
model.56 Instead of using Gabor filters, the multichannel
decomposition is performed by using the steerable pyramid
with four scales and four orientations. An excitatory-inhibi-
tory stage and a pooling stage are performed to yield a map
of normalized responses. The distortion is measured based
on the squared error between normalized response maps gen-
erated for the reference and the distorted videos.

Masry et al.53 developed a VQA algorith that employs
a multichannel decomposition and a masking model imple-
mented via a separable wavelet transform. A training step
was performed on a set of videos and associated subjective
quality scores to obtain the masking parameters. Later in
Ref. 55, Li et al. utilized this algorithm as part of a VQA
algorithm that measures and combines detail losses and

additive impairments within each frame; optimal parameters
were determined by training the algorithm on a subset of the
LIVE video database.24

Seshadrinathan and Bovik4 proposed the motion-based
video integrity evaluation (MOVIE) algorithm that estimates
spatial quality, temporal quality, and spatiotemporal quality
via a 3-D subband decomposition. MOVIE decomposes both
the reference and distorted videos by using a 3-D Gabor
filter-bank with 105 spatiotemporal subbands. The spatial
component of MOVIE uses the outputs of the spatiotemporal
Gabor filters and a model of contrast masking to capture
spatial distortion. The temporal component of MOVIE
employs optical-flow motion estimation to determine motion
information, which is combined with the outputs of the
spatiotemporal Gabor filters to capture temporal distortion.
These spatial and temporal components are combined into
an overall estimate of video quality.

2.5 Summary
In summary, although previous VQA algorithms have ana-
lyzed the effects of spatial and temporal interactions on video
quality, none have estimated video quality based on spatio-
temporal slices (STS images), which contain important
spatiotemporal information on a longer time scale. Earlier
related work was performed by Péchard et al.,57 where
spatiotemporal tubes rather than slices were used for VQA.
Their algorithm employs a segmentation to create spatiotem-
poral tubes, which are coherent in terms of motion and spa-
tial activity. Similar to our STS images, the spatiotemporal
tubes permit analysis of spatiotemporal information on a
long time scale, and Pechard et al. demonstrated the superi-
ority of their approach compared to other VQA algorithms
on videos containing H.264 artifacts.

In the following section, we describe our HVS-based
VQA algorithm, ViS3, which employs measures of both
motion-weighted spatial distortion and spatiotemporal dis-
similarity of the STS images to estimate perceived video
quality degradation.

3 Algorithm
The ViS3 algorithm estimates video quality degradation by
using the luminance components of the reference and dis-
torted videos in YUV color space. We denote I as the cuboid
representation of the Y component of the reference video,
and we denote Î as the cuboid representation of the Y com-
ponent of the distorted video.

The ViS3 algorithm employs a combination of both spa-
tial and spatiotemporal analyses to estimate the perceived
video quality degradation of the distorted video Î in com-
parison to the reference video I. Figure 5 shows a block
diagram of the ViS3 algorithm, which measures spatial dis-
tortion and spatiotemporal dissimilarity separately via two
main stages:

• Spatial distortion: This stage estimates the average per-
ceived distortion that occurs spatially in every group of
frames (GOF). A motion-weighting scheme is used to
model the effect of motion on the visibility of distor-
tion. These per-group spatial distortion values are then
combined into a single scalar, ViS1, which denotes an
estimate of overall perceived video quality degradation
due to spatial distortion.
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• Spatiotemporal dissimilarity: The spatiotemporal dis-
similarity stage estimates video quality degradation
by computing the spatiotemporal dissimilarity of the
STS images extracted from the reference and distorted
videos via the differences of spatiotemporal responses
of modeled visual neurons. These per-STS-image
spatiotemporal dissimilarity values are then combined
into a single scalar, ViS2, which denotes an estimate of
overall perceived video quality degradation due to spa-
tiotemporal dissimilarity.

Finally, the spatial distortion value ViS1 and the spatio-
temporal dissimilarity value ViS2 are combined via a geo-
metric mean to yield a single scalar ViS3 that represents
the overall perceived quality degradation of the video. The
following subsections provide details of each stage of the
algorithm.

3.1 Spatial Distortion
In the spatial distortion stage, we employ and extend our
MAD algorithm,26 which was designed for still images, to
measure spatial distortion in each GOF of the video. The
MAD algorithm is composed of two separate strategies:
(1) a detection-based strategy, which computes the perceived
distortion due to visual detection (denoted by ddetect) and
(2) an appearance-based strategy, which computes the per-
ceived distortion due to visual appearance changes (denoted
by dappear). The perceived distortion due to visual detection is
measured by using a masking-weighted block-based
mean-squared error in the lightness domain. The perceived
distortion due to visual appearance changes is measured by
computing the average differences between the block-based
log-Gabor statistics of the reference and distorted images.

The MAD index of the distorted image is computed via
a geometric weighted mean.

α ¼ 1

1þ β1 × ðddetectÞβ2
; (1)

MAD ¼ ðddetectÞα × ðdappearÞ1−α; (2)

where the weight α ∈ ½0; 1� serves to adaptively combine the
two strategies (ddetect and dappear) based on the overall level of

distortion. As described in Ref. 26, for high-quality images,
MAD should obtain its value mostly from ddetect, whereas for
low-quality images, MAD should obtain its value mostly
from dappear. Thus, an initial estimate of the quality level
is required in order to determine the proper weighting (α)
of the two strategies. In Ref. 26, the value of ddetect served
as this initial estimate, and thus, α is a function of ddetect. The
two free parameters β1 ¼ 0.467 and β2 ¼ 0.130 were
obtained after training on the A57 image database;58 see
Ref. 26 for a complete description of the MAD algorithm.

To extend MAD for use with video, we take the Y com-
ponents of the videos and perform the following steps
(shown in Fig. 6) on each group of N consecutive frames:

1. Compute a visible distortion map for each frame by
using MAD’s detection-based strategy. The maps
computed from all frames in each GOF are then aver-
aged to yield a GOF-based visible distortion map.

2. Compute a statistical difference map for each frame by
using MAD’s appearance-based strategy. The maps
computed from all frames in each GOF are then aver-
aged to yield a GOF-based statistical difference map.

3. Estimate the magnitude of the motion vectors in each
frame of the reference video by using the Lucas–
Kanade optical flow method.59 The motion magnitude
maps computed from all frames in each GOF are aver-
aged to yield a GOF-based motion magnitude map.

4. Combine the three GOF-based maps into a single
spatial distortion map; the root mean squared (RMS)
value of this map serves as the spatial distortion value
of the GOF. The estimated spatial distortion values of
all GOFs are combined via an arithmetic mean to yield
a single scalar that represents the perceived video
quality degradation due to spatial distortion.

The video frames are extracted from the Y components of
the reference and distorted videos. Let Itðx; yÞ denote the t’th
frame of the reference video I, and let Îtðx; yÞ denote the t’th
frame of the distorted video Î, where t ∈ ½1; T� denotes the
frame (time) index, and T denotes the number of frames in
video I. These video frames are then divided into groups of
N consecutive frames for both the reference and the distorted
video. The following subsections describe the details of
each step.

Fig. 5 Block diagram of the ViS3 algorithm. The spatial distortion
stage is applied to groups of normal video frames extracted in
a front-to-back fashion to compute spatial distortion value ViS1.
The spatiotemporal dissimilarity value ViS2 is computed from the
STS images extracted in a left-to-right fashion and a top-to-bottom
fashion. The final scalar output of the ViS3 algorithm is computed
via a geometric mean of the spatial distortion and spatiotemporal
dissimilarity values.

Fig. 6 Block diagram of the spatial distortion stage. The extracted
frames from the reference and distorted videos are used to compute
a visible distortion map and a statistical difference map of each group
of frames (GOF). Motion estimation is performed on the reference
video frames and used to model the effect of motion on the visibility
of distortion. All maps are combined and collapsed to yield a spatial
distortion value ViS1.
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3.1.1 Compute visible distortion map

We apply the detection-based strategy from Ref. 26 to all
pairs of respective frames from the reference video and
the distorted video. A block diagram of this detection-
based strategy is provided in Fig. 7.

Detection-based strategy. As illustrated in Fig. 7, a pre-
processing step is first performed by using the nonlinear
luminance conversion and spatial contrast sensitivity func-
tion filtering. Then, models of luminance and contrast mask-
ing are used to compute a local distortion visibility map.
Next, this map is weighted by local mean squared error
(MSE) to yield a visible distortion map. The specific steps
are given below (see Ref. 26 for additional details).

First, to account for the nonlinear relationship between
digital pixel values and physical luminance of typical display
media, the video I is converted to a perceived luminance
video L via

L ¼ ðaþ kIÞγ∕3; (3)

where the parameters a, k, and γ are constants specific to the
device on which the video is displayed. For 8-bit pixel values
and an sRGB display, these parameters are given by a ¼ 0,
k ¼ 0.02874, and γ ¼ 2.2. The division by 3 attempts to
take into account the nonlinear HVS response to luminance
by converting luminance into perceived luminance (relative
lightness).

Next, the contrast sensitivity function (CSF) is applied by
filtering both the reference frame L and the error frame
ΔL ¼ L − L̂. The filtering is performed in the frequency
domain via

L̃ ¼ F−1½Hðu; vÞ × F½L��; (4)

where F and F−1 denote the discrete fourier transform (DFT)
and inverse DFT, respectively; Hðu; vÞ is the DFT-based
version of the CSF function defined by Eq. (3) in Ref. 26.

To account for the fact that the presence of an image can
reduce the detectability of distortions, MAD employs a sim-
ple spatial-domain measure of contrast masking.

First, a local contrast map is computed for the reference
frame in the lightness domain by dividing L̃ into 16 × 16
blocks (with 75% overlap between neighboring blocks)
and then measuring the RMS contrast of each block. The
RMS contrast of block b of L̃ is computed via

CrefðbÞ ¼ σ̃refðbÞ∕μrefðbÞ; (5)

where μrefðbÞ denotes the mean of block b of L̃, and σ̃refðbÞ
denotes the minimum of the standard deviations of the four
8 × 8 subblocks of b. The block size of 16 × 16 was chosen
because it is large enough to accommodate division into
reasonably sized subblocks (to avoid overestimating the
contrast around edges), but small enough to yield decent
spatial localization (see Appendix A in Ref. 26).

CrefðbÞ is a measure of the local RMS contrast in the refer-
ence frame and is thus independent of the distortions.
Accordingly, we next compute a local contrast map for
the error frame to account for the spatial distribution of
the distortions in the distorted frame. The error frame ΔL
is divided into 16 × 16 blocks (with 75% overlap between
blocks), and then the RMS contrast CerrðbÞ for each block
b is computed via

CerrðbÞ ¼
�
σerrðbÞ∕μrefðbÞ if μrefðbÞ > 0:5
0 otherwise;

(6)

where σerrðbÞ denotes the standard deviation of block b of
ΔL. A lightness threshold of 0.5 is employed to account
for the fact that the HVS is relatively insensitive to changes
in extremely dark regions.

The local contrast maps are computed for both the refer-
ence frame and the error frame for every block b of size 16 ×
16 with 75% overlap between neighboring blocks. The two
local contrast maps fCrefg and fCerrg are used to compute
a local distortion visibility map denoted by ξðbÞ via

ξðbÞ

¼
8<
:
ln½CerrðbÞ�− ln½CrefðbÞ� if ln½CerrðbÞ�> ln½CrefðbÞ�>−5
ln½CerrðbÞ�þ5 if ln½CerrðbÞ�>−5≥ ln½CrefðbÞ�
0 otherwise

:

(7)

The local distortion visibility map ξ is then point-by-point
multiplied by the local MSE to determine a visible distortion
map denoted by ϒD, where the superscript D is used to imply
that the map is computed from the detection-based strategy.
The visible distortion at the location of block b is given by

ϒDðbÞ ¼ ξðbÞ · MSEðbÞ: (8)

Note that in Ref. 26, the visible distortion map ϒD is
collapsed into a single scalar that represents the perceived
distortion due to visual detection ddetect, which is computed

Fig. 7 Block diagram of the detection-based strategy used to compute a visible distortion map. Both
the reference and the distorted frames are converted to perceived luminance and filtered by a contrast
sensitivity function. By comparing the local contrast of the reference frame L and the error frame ΔL, we
obtain a local distortion visibility map. This map is then weighted by local mean squared error to yield
a visible distortion map.
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via ddetect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

b½ϒDðbÞ�2
p

, where the summation is over all
blocks. In the current paper, we do not collapse ϒD.

Apply to groups of video frames. Let ϒD
t denote the

visible distortion map computed from the t’th frame of the
reference video and the t’th frame of the distorted video.
The visible distortion maps computed from all frames in
the k’th GOF will be fϒD

Nðk−1Þþ1
;ϒD

Nðk−1Þþ2
; : : : ;ϒD

Nkg,
where k ∈ f1; 2; : : : ; Kg is the GOF index and K is the
number of GOFs in the video. These maps are combined via
a point-by-point average to yield a GOF-based visible dis-
tortion map of the k’th GOF, which is denoted by ϒ̄D

k .

ϒ̄D
k ¼ 1

N

XN
τ¼1

ϒD
Nðk−1Þþτ: (9)

3.1.2 Compute statistical difference map

As argued in Ref. 26, when the distortions in the image are
highly suprathreshold, perceived distortion is better modeled
by quantifying the extent to which the distortions degrade the
appearance of the image’s subject matter. The appearance-
based strategy measures local statistics of multiscale log-
Gabor filter responses to capture changes in visual appearance.
Figure 8 shows a block diagram of the appearance-based
strategy used to compute a statistical difference map between
the reference and the distorted frame.

Appearance-based strategy. The appearance-based strat-
egy employs a computational neural model using a log-
Gabor filter-bank (with five scales s ∈ f1; 2; 3; 4; 5g and
four orientations o ∈ f1; 2; 3; 4g), which implements both
even-symmetric (cosine-phase) and odd-symmetric (sine-
phase) filters. The even and odd filter outputs are then com-
bined to yield magnitude-only subband values. Let fRs;og
and fR̂s;og denote the sets of log-Gabor subbands computed
for a reference and a distorted frame, respectively, where
each subband is the same size as the frames.

The standard deviation, skewness, and kurtosis are then
computed for each block b of size 16 × 16 (with 75% overlap
between blocks) for each log-Gabor subband of the reference
frame and the distorted frame. Let σs;oðbÞ, ςs;oðbÞ, and
κs;oðbÞ denote the standard deviation, skewness, and kurtosis
computed from block b of subband Rs;o. Let σ̂s;oðbÞ, ς̂s;oðbÞ,

and κ̂s;oðbÞ denote the standard deviation, skewness, and kur-
tosis computed from block b of subband R̂s;o. The statistical
difference map is computed as the weighted combination of
the differences in standard deviation, skewness, and kurtosis
for all subbands. We denote ΥA as the statistical difference
map, where the superscript A is used to imply that the map is
computed from the appearance-based strategy. Specifically,
the statistical difference at the location of block b is given by

ϒAðbÞ ¼
X5
s¼1

X4
o¼1

ws½jσs;oðbÞ − σ̂s;oðbÞj þ 2jςs;oðbÞ

− ς̂s;oðbÞj þ jκs;oðbÞ − κ̂s;oðbÞj�; (10)

where the scale-specific weights ws ¼ f0.5; 0.75; 1; 5; 6g
(for the finest to coarsest scales, respectively) are chosen
the same as in Ref. 26 to account for the HVS’s preference
for coarse scales over fine scales (see Ref. 26 for more
details).

Note that in Ref. 26, the statistical difference map ϒA is
collapsed into a single scalar that represents the perceived
distortion due to visual appearance changes dappear, which
is computed via dappear ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b½ϒAðbÞ�2

p
, where the summa-

tion is over all blocks. In the current paper, we do not col-
lapse ϒA.

Apply to groups of video frames. Let ΥA
t denote the stat-

istical difference map computed from the t’th frame of the
reference video and the t’th frame of the distorted video.
The statistical difference maps computed from all frames
in the k’th GOF will be fϒA

Nðk−1Þþ1
;ϒA

Nðk−1Þþ2
; : : : ;ϒA

Nkg,
where k ∈ f1; 2; : : : ; Kg is the GOF index and K is the num-
ber of GOFs in the video. These maps are combined via
a point-by-point average to yield a GOF-based statistical
difference map of the k’th GOF, which is denoted by ϒ̄A

k .

ϒ̄A
k ¼ 1

N

XN
τ¼1

ϒA
Nðk−1Þþτ: (11)

3.1.3 Optical-flow motion estimation

Both the detection-based strategy and the appearance-based
strategy were designed for still images. They do not account

Fig. 8 Block diagram of the appearance-based strategy used to compute a statistical difference map.
The reference and the distorted frames are decomposed into different subbands using a two-dimensional
log-Gabor filter-bank. Local standard deviation, skewness, and kurtosis are computed for each subband
of both the reference and the distorted frames. The differences of local standard deviation, skewness,
and kurtosis between each subband of the reference frame and the respective subband of the distorted
frame are combined into a statistical difference map.
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for the effects of motion on the visibility of distortion. One
attribute of motion that affects the visibility of distortion in
video is the speed of motion (or the magnitude of motion
vectors). According to Wang et al.5 and Barkowsky et al.,18

the visibility of distortion is significantly reduced when the
speed of motion is large. Alternatively, the distortion in slow-
moving regions is more visible than the distortion in fast-
moving regions.

To model this effect of motion, we measure the speed of
motion in different regions of the video by using an optical
flow algorithm. We specifically apply the optical flow
method designed by Lucas and Kanade59 to the reference
video to estimate motion vectors. The Lucas–Kanade method
assumes that the displacement of the frame contents between
two nearby frames is small and approximately constant
within a neighborhood (window) of a point under consider-
ation. Thus, the optical-flow motion vector can be assumed
the same within a window centered at that point, and it is
computed from solving the optical-flow equations using
the least squares criterion.

By using a window of size 8 × 8, for each pair of consecu-
tive frames, we obtain two matrices of motion vectors, Mv
andMh, with respect to the vertical and horizontal directions.
The motion magnitude matrix is then computed as
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

v þM2
h

p
. Each element in this matrix represents

the motion magnitude of a region defined by an 8 × 8
block in the frame.

Let Mt denote the motion magnitude matrix computed
from the t’th video frame and its successive frame, where t ¼
1; 2; · · · ; T − 1 denotes the frame index and T is the number
of frames in the video. For the k’th GOF of the reference
video, the motion magnitude matrices computed from all
N of its frames are averaged to yield an average motion mag-
nitude matrix via

M̄k ¼
1

N

XN
τ¼1

MNðk−1Þþτ: (12)

Note that the sizes ofMt and M̄k are both 64 times smaller
than a regular frame because each value in these matrices
represents motion magnitude of an 8 × 8window in the regu-
lar frame. We therefore resize the M̄k matrix to the size of
the video frame by using nearest-neighbor interpolation to
obtain the GOF-based motion magnitude map of the k’th
GOF denoted by ϒ̄M

k , where the superscript M is used to
imply that the map is computed from the motion magnitudes.

3.1.4 Combine maps and compute spatial distortion
value

For each GOF, we have computed the GOF-based visible
distortion map ϒ̄D, the GOF-based statistical difference
map ϒ̄A, and the GOF-based motion magnitude map ϒ̄M.
Now, we extend and apply Eq. (2) to respective regions
of the visible distortion map and the statistical difference
map to obtain the GOF-based most apparent distortion
map. This map is then point-by-point weighted by the
motion magnitude map ϒ̄M

k to yield the spatial distortion
map of the k’th GOF. We denote Δkðx; yÞ of size W ×H,
the video frame size, as the spatial distortion map of the
k’th GOF. Specifically, the value at ðx; yÞ of the spatial dis-
tortion map Δkðx; yÞ is computed via

α̂ðx; yÞ ¼ 1

1þ β1 × ½ϒ̄D
k ðx; yÞ�β2

; (13)

Δkðx; yÞ ¼
½ϒ̄D

k ðx; yÞ�α̂ðx;yÞ × ½ϒ̄A
k ðx; yÞ�1−α̂ðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϒ̄M
k ðx; yÞ

q : (14)

The division by ϒ̄M
k ðx; yÞ accounts for the fact that the

distortion in slow-moving regions is generally more visible
than the distortion in fast-moving regions. When the value in
the motion magnitude map ϒ̄M

k is relatively large or the cor-
responding spatial region is fast-moving, the visible distor-
tion value in Δkðx; yÞ is relatively small; when the value in
the motion magnitude map ϒ̄M

k is relatively small or the cor-
responding spatial region is slow-moving, the visible distor-
tion value in Δkðx; yÞ is relatively large. When there is no
motion in the region, the visible distortion is determined
solely by ϒ̄D

k and ϒ̄A
k .

Figure 9 shows examples of the first frame (a) and the last
frame (b) of a specific GOF of video mc2_50fps.yuv from
the LIVE video database.24 The visible distortion map (c),
the statistical difference map (d), the motion magnitude
map (e), and the spatial distortion map (f) computed for
this GOF are also shown. As seen from the visible distortion
map (c) and the statistical difference map (d), at the regions
of high visible distortion level (i.e., the train, the numbers in
the calendar), the spatial distortion map is weighted more by
the statistical difference map. At the regions of low visible
distortion level (i.e., the wall background), the spatial distor-
tion map is weighted more by the visible distortion map.

As also seen from Figs. 9(c) and 9(d), the region corre-
sponding to the train at the bottom of the frames is more
heavily distorted than the other regions. However, due to
the fast movement of the train, which is reflected in the
bottom of the motion magnitude map (e), the visibility of
distortion is reduced, making this region less bright in the
spatial distortion map (f).

To estimate spatial distortion value of each GOF, we com-
pute the RMS value of the spatial distortion map. The RMS
value of the map Δkðx; yÞ of size W ×H is given by

Δ̄XY
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W ×H

XW
x¼1

XH
y¼1

½Δkðx; yÞ�2
vuut ; (15)

where the superscript XY is used to remind readers that the
value is computed from the normal frames with two dimen-
sions x and y. The overall perceived spatial distortion value,
denoted by ViS1, is computed as the arithmetic mean of all
spatial distortion values Δ̄XY

k via

ViS1 ¼
1

K

XK
k¼1

Δ̄XY
k : (16)

Here, ViS1 is a single scalar that represents the overall
perceived quality degradation of the video due to spatial dis-
tortion. The lower theViS1 value, the better the video quality.
A value ViS1 ¼ 0 indicates that the distorted video is equal
in quality to the reference video.
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3.2 Spatiotemporal Dissimilarity
In the distorted video, the distortion impacts not only the spa-
tial relationship between neighboring pixels within the cur-
rent frame, but also the transition between frames, which
can be captured via the use of STS images. The difference
between the STS images from the reference and distorted
videos is referred to as the spatiotemporal dissimilarity in
this paper. If the spatiotemporal dissimilarity between the STS
images is small, the distorted video has high quality relative
to the reference video; if the spatiotemporal dissimilarity
between the STS images is large, the distorted video has

low quality relative to the reference video. Figure 10 depicts
a block diagram of the spatiotemporal dissimilarity stage,
which estimates the spatiotemporal dissimilarity between
the reference and the distorted video via the following steps:

1. Extract the vertical and horizontal STS images in the
lightness domain.

2. Compute a spatiotemporal correlation map of the STS
images.

3. Filter the STS images by using a set of spatiotemporal
filters. These spatiotemporally filtered images are used

Fig. 9 Examples of the first and last frames [(a) and (b)], the visible distortion map (c), the statistical
difference map (d), the motion magnitude map (e), and the spatial distortion map (f) computed for a spe-
cific GOF of the videomc2_50fps.yuv from the LIVE video database.24 All maps have been normalized in
contrast to promote visibility. Note that the brighter the maps, the more distorted the corresponding spa-
tial region of the GOF; for the motion magnitude map, the brighter the map, the faster the motion in the
corresponding spatial region of the GOF.

Fig. 10 Block diagram of the spatiotemporal dissimilarity stage of the ViS3 algorithm. The STS images
are extracted from the perceived luminance videos. The spatiotemporal correlation and the difference of
spatiotemporal responses are computed in a block-based fashion and combined to yield a spatiotem-
poral dissimilarity map. All maps are then collapsed by using root mean square and combined to yield
the spatiotemporal dissimilarity value ViS2 of the distorted video.
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to compute a map of spatiotemporal response
differences.

4. Combine the above two maps into a spatiotemporal
dissimilarity map and collapse this map into a spatio-
temporal dissimilarity value. These per-STS-image
dissimilarity values are combined into a single scalar,
ViS2, which denotes the overall perceived video
spatiotemporal dissimilarity.

The following subsections describe the details of each
step.

3.2.1 Extract the STS images

The reference video I and the distorted video Î are converted
to perceived luminance videos L and L̂, respectively, using
Eq. (3). Let Sxðt; yÞ denote the vertical STS image of
the video cuboid L, where x ∈ ½1;W� denotes the vertical
slice (column) index and W denotes the spatial width of
the video (measured in pixels). As shown previously in
Fig. 1, these vertical STS images contain temporal informa-
tion in the horizontal direction and spatial information in the
vertical direction. Thus, for a video containing T frames,
Sxðt; yÞ will be of size T ×H, where H denotes the spatial
height of the video (measured in pixels). There are W such
STS images S1ðt; yÞ; S2ðt; yÞ; · · · ; SWðt; yÞ.

Similarly, let Syðx; tÞ denote the horizontal STS image of
the video cuboid L, where y ∈ ½1; H� denotes the horizontal
slice (row) index and H denotes the spatial height of the
video. These horizontal STS images contain spatial informa-
tion in the vertical direction and temporal information in the
horizontal direction. Thus, for a video containing T frames,
Syðx; tÞ will be of size W × T, and there are H such STS
images S1ðx; tÞ; S2ðx; tÞ; · · · ; SHðx; tÞ.

The STS images extracted from the reference video
[Sxðt; yÞ, Syðx; tÞ] and the STS images extracted from the
distorted video [Ŝxðt; yÞ, Ŝyðx; tÞ] are then used to compute
the spatiotemporal dissimilarity values. This procedure con-
sists of two main steps: (1) compute the spatiotemporal cor-
relation maps and (2) compute the spatiotemporal response
difference maps.

3.2.2 Compute spatiotemporal correlation map

One simple way to measure the spatiotemporal dissimilarity
is by using the local linear correlation coefficients of the STS
images extracted from the reference and the distorted videos.
If the distorted video has perfect quality relative to the refer-
ence video, these two videos should have high correlation in
the STS images; if the distorted video has low quality relative
to the reference video, the spatiotemporal correlation will
be low.

Let ρðbÞ denote the linear correlation coefficient com-
puted from block b of the two STS images Sxðt; yÞ and
Ŝxðt; yÞ. We define the local spatiotemporal correlation coef-
ficient ρ̃ðbÞ of these two blocks as

ρ̃ðbÞ ¼
8<
:

0 if ρðbÞ < 0

1 if ρðbÞ > 0.9

ρðbÞ otherwise

: (17)

As shown in Eq. (17), if the two blocks are highly pos-
itively correlated, we set ρ̃ðbÞ ¼ 1. The threshold value of

0.9 was chosen empirically so that a relatively high positive
correlation (ρ > 0.9) is still considered perfect by the algo-
rithm. As we demonstrate in the online supplement to
this paper,60 the performance of the algorithm is relatively
robust to small changes in this threshold value. On the
other hand, if the two blocks are negatively correlated,
we set ρ̃ðbÞ ¼ 0 to reflect the dissimilarity between the
two blocks.

This process is performed on every block of size 16 × 16
with 75% overlap between neighboring blocks, yielding
a spatiotemporal correlation map denoted by Pxðt; yÞ between
Sxðt; yÞ and Ŝxðt; yÞ. Similarly, we compute a spatiotemporal
correlation map denoted by Pyðx; tÞ between Syðx; tÞ and
Ŝyðx; tÞ. Examples of the correlation maps are shown in
Fig. 11(c). The brighter the maps, the higher the spatiotem-
poral correlation between corresponding regions of the two
STS images.

3.2.3 Compute spatiotemporal response difference
map

The spatiotemporal correlation coefficient computed in
Sec. 3.2.2 does not account for the HVS’s response to
joint spatiotemporal characteristics of the video. There-
fore, in addition to measuring the spatiotemporal correlation,
we employ a computational HVS model that takes into
account joint spatiotemporal perception based on the work
of Watson and Ahumada in Ref. 27. This model applies
separate 1-D filters to each dimension of the STS images
to measure spatiotemporal responses. In Ref. 23, Adelson
and Bergen used these spatiotemporal responses to measure
energy of motion in a video. Here, we apply the model to the
STS images and measure the differences of spatiotemporal
responses to estimate video quality.

Decompose STS images into spatiotemporally filtered
images. As stated by Adelson and Bergen in Ref. 23,
the spatiotemporal information presented in the STS images
can be captured via a set of spatiotemporally oriented filters.
As suggested by Watson and Ahumada,27 these filters can be
constructed by two sets of separate 1-D filters (spatial and
temporal) with appropriate spatiotemporal characteristics.
Following this suggestion, we employ a set of log-Gabor
1-D filters fgsg, s ∈ f1; 2; 3; 4; 5g, as the spatial filters,
where the frequency response of each filter is given by

GsðωÞ ¼ exp

"
−

�
lnj ω

ωs
j�2

2ðln BsÞ2
#
; (18)

where Gs, ωs, and Bs denote the frequency response, center
frequency, and bandwidth of the filter gs, respectively, ω ∈
½−ωs;ωs� is the 1-D spatial frequency. The bandwidth Bs is
held constant for all scales to obtain constant filter shape.
We specifically choose five scales and a filter bandwidth of
approximately two octaves (Bs ¼ 0.55). These filters are
almost the same as the log-Gabor filters used in Ref. 26
without the orientation information.

The two temporal filters fhzg, z ∈ f1; 2g, were selected
following the Adelson–Bergen model.23 The impulse response
at time instance t of each filter is given by
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hzðtÞ ¼ tnz expð−tÞ
�
1

nz!
−

t2

ðnz þ 2Þ!
�
; (19)

where n1 ¼ 6 and n2 ¼ 9 were chosen to approximate
the temporal contrast sensitivity functions reported by
Robson,61 which correspond to the fast and slow motions,
respectively.

The STS images are filtered along the spatial dimension
by each spatial filter and then along the temporal dimension
by each temporal filter to yield a spatiotemporally filtered
image, which represents modeled spatiotemporal neural
responses. With five spatial filters and two temporal filters,
each STS image yields 10 spatiotemporally filtered images.
We denote Rs;z

x ðt; yÞ and Rs;z
y ðx; tÞ, s ∈ f1; 2; 3; 4; 5g and

z ∈ f1; 2g, as the spatiotemporally filtered images obtained
by filtering the STS images Sxðt; yÞ and Syðx; tÞ from the
reference video via spatial filter gs and temporal filter hz.
These filtered images are computed via

Rs;z
x ðt; yÞ ¼ ½Sxðt; yÞ �y gs� �t hz; (20)

Rs;z
y ðx; tÞ ¼ ½Syðx; tÞ �x gs� �t hz; (21)

where �d, d ∈ fx; y; tg, denotes the convolution along
dimension d.

Similarly, we denote R̂s;z
x ðt; yÞ and R̂s;z

y ðx; tÞ as the spatio-
temporally filtered images obtained by filtering the STS
images Ŝxðt; yÞ and Ŝyðx; tÞ from the distorted video via spa-
tial filter gs and temporal filter hz. Then, the spatiotemporal
response differences ΔRs;z

x ðt; yÞ and ΔRs;z
y ðx; tÞ are defined

as the absolute difference of the spatiotemporally filtered
images via

ΔRs;z
x ðt; yÞ ¼ jRs;z

x ðt; yÞ − R̂s;z
x ðt; yÞj; (22)

ΔRs;z
y ðx; tÞ ¼ jRs;z

y ðx; tÞ − R̂s;z
y ðx; tÞj: (23)

Although the proper technique of estimating video quality
based on the response differences remains an open research
question, as discussed next, we employ a simple yet effective
measure based on the local standard deviation of the spatio-
temporal response differences.

Compute log of response difference map. We compute
the local mean and standard deviation of the spatiotemporal
response differences in a block-based fashion. Let μs;zx ðbÞ
and σs;zx ðbÞ denote the local mean and standard deviation
computed from block b of the response difference
ΔRs;z

x ðt; yÞ. Let μs;zy ðbÞ and σs;zy ðbÞ denote the local mean
and standard deviation computed from block b of the
response difference ΔRs;z

y ðx; tÞ.
The adjusted standard deviation of block b of the error-

filtered image at spatial frequency index s and temporal
frequency index z is given by

σ̃s;zx ðbÞ ¼
8<
:

0; if μs;zx ðbÞ < p

σs;zx ðbÞ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μs;zx ðbÞ

pþμs;zx ðbÞ
q

; otherwise
; (24)

σ̃s;zy ðbÞ ¼
8<
:

0; if μs;zy ðbÞ < p

σs;zy ðbÞ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μs;zy ðbÞ

pþμs;zy ðbÞ
q

; otherwise
; (25)

where p ¼ 0.01 is a threshold value. When the mean value of
block b is small, there is no dissimilarity between the regions
at the location of block b in the STS images; when the mean
value of block b is large enough, the dissimilarity is approx-
imately measured by the standard deviation of block b in the
response differences.

This process is performed on every block of size 16 × 16
with 75% overlap between neighboring blocks, yielding
maps of adjusted standard deviation σ̃s;zx ðt; yÞ and σ̃s;zy ðx; tÞ.
The log of response difference maps Dxðt; yÞ and Dyðx; tÞ
are computed as a natural logarithm of a weighted sum
of all the maps ~σs;zx ðt; yÞ and σ̃s;zy ðx; tÞ, respectively, as
follows:

Dxðt; yÞ ¼ ln

(
1þ A

X5
s¼1

X2
z¼1

ws½σ̃s;zx ðt; yÞ�2
)
; (26)

Dyðx; tÞ ¼ ln

(
1þ A

X5
s¼1

X2
z¼1

ws½σ̃s;zy ðx; tÞ�2
)
; (27)

where the weights fwsg ¼ f0.5; 0.75; 1; 5; 6g were chosen
following Ref. 26 to account for the HVS’s preference for
coarse scales over fine scales. The addition of 1 is to prevent
the logarithm of zero, and A ¼ 104 is a scaling factor
to enlarge the adjusted variance. Examples of the log of
response difference maps are shown in Fig. 11(d). The
brighter the maps, the greater the difference in spatiotempo-
ral responses between corresponding regions of the two STS
images.

3.2.4 Compute spatiotemporal dissimilarity value

The spatiotemporal correlation map P and the log of response
difference map D are combined into a spatiotemporal dis-
similarity map via a point-by-point multiplication.

Δxðt; yÞ ¼ Dxðt; yÞ ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Pxðt; yÞ

p
; (28)

Δyðx; tÞ ¼ Dyðx; tÞ ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Pyðx; tÞ

q
: (29)

Let Δ̄TY
c denote the RMS value of the spatiotemporal dis-

similarity map Δcðt; yÞ of size T ×H, where c is the column
(vertical slice) index of the vertical STS images. Let Δ̄XT

r
denote the RMS value of the spatiotemporal dissimilarity
map Δrðx; tÞ of size W × T, where r is the row (horizontal
slice) index of the horizontal STS images. Specifically, these
RMS values are computed as follows:

Δ̄TY
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T ×H

XT
t¼1

XH
y¼1

½Δcðt; yÞ�2
vuut ; (30)
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Δ̄XT
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W × T

XW
x¼1

XT
t¼1

½Δrðx; tÞ�2
vuut ; (31)

where W and H are the spatial width and height of the
video frame, respectively, and T is number of frames

in the videos. The superscripts TY and XT are used
to remind readers about the two dimensions of the
STS images that are used to compute the values. The
spatiotemporal dissimilarity value, denoted by ViS2,
between the reference and the distorted video is given
by

Fig. 11 Demonstrative maps for two pairs of STS images Sy ðx; tÞ and Ŝy ðx; tÞ from videos
mc2_50fps.yuv (LIVE) and PartyScene_dst_09.yuv (CSIQ) with the correlation maps Py ðx; tÞ, the log
of response difference maps Dy ðx; tÞ, and spatiotemporal dissimilarity maps Δy ðx; tÞ. All maps have
been normalized to promote visibility. Note that the brighter the spatiotemporal dissimilarity maps
Δy ðx; tÞ, the more dissimilar the corresponding regions in the STS images.
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ViS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W

XW
c¼1

½Δ̄TY
c �2 þ 1

H

XH
r¼1

½Δ̄XT
r �2

vuut : (32)

Here, ViS2 is a single scalar that represents the overall
perceived video quality degradation due to spatiotemporal
dissimilarity. The lower the ViS2 value, the better the
video quality. Avalue ofViS2 ¼ 0 indicates that the distorted
video has perfect quality relative to the reference video.

Figure 11 shows the correlation maps Pyðx; tÞ, the log of
response difference maps Dyðx; tÞ, and the spatiotemporal
dissimilarity maps Δyðx; tÞ computed from two pairs of
specific horizontal STS images. The brighter values in the
spatiotemporal dissimilarity maps Δyðx; tÞ in Fig. 11(e)
denote the corresponding spatiotemporal regions of greater
dissimilarity.

As observed from the video mc2_50fps.yuv (LIVE), the
spatial distortion occurs more frequently in the middle
frames. These middle frames are also heavily distorted in
nearly every spatial region. This fact is well-captured by
the spatiotemporal dissimilarity map in Fig. 11(e) (left).
As observed in Fig. 11(e) (left), the dissimilarity map is
brighter in the middle and along the entire spatial dimension.
In video PartyScene_dst_09.yuv (CSIQ), the spatial dis-
tortion that occurs in the center of the video is smaller
than the distortion in the surrounding area. This fact is
also reflected in the spatiotemporal dissimilarity map in
Fig. 11(e) (right), where the spatiotemporal dissimilarity
map shows brighter surrounding regions compared to the
center regions across the temporal dimension.

3.3 Combine Spatial Distortion and Spatiotemporal
Dissimilarity Values

Finally, the overall estimate of perceived video quality deg-
radation, denoted by ViS3, is computed from the spatial dis-
tortion value ViS1 and the spatiotemporal dissimilarity value
ViS2. Specifically, ViS3 is computed as a geometric mean of
ViS1 and ViS2, which is given by

ViS3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ViS1 × ViS2

p
: (33)

Here, ViS3 is a single scalar that represents the overall
perceived quality degradation of the video. The smaller
the ViS3 value, the better the video quality. A value of
ViS3 ¼ 0 indicates that the distorted video is equal in quality
to the reference video.

Note that the values of ViS1 and ViS2 occupy different
ranges. Thus, the use of a geometric mean in Eq. (33) allows
us to combine these values without the need for custom
weights (which would be required when using an arithmetic
mean). Other combinations are also possible, e.g., using a
weighted geometric mean with possibly adaptive weights.
However, our preliminary attempts to select such weights
have not yielded significant improvements (see also
Sec. 4.3.4).

4 Results
In this section, we analyze the performance of the ViS3
algorithm in predicting subjective ratings of quality on
three publicly available video-quality databases. We also
compare the performance of ViS3 with other quality assess-
ment algorithms.

4.1 Video Quality Databases
To evaluate the performance of ViS3 and other quality
assessment algorithms, we used the following three publicly
available video-quality databases that have multiple types of
distortion:

1. The LIVE video database (four types of distortion);24

2. The IVPL video database (four types of distortion);62

3. The CSIQ video database (six types of distortion).63

4.1.1 LIVE video database

The LIVE video database24 developed at the University of
Texas at Austin contains 10 reference videos and 150 dis-
torted videos (15 distorted versions per each reference
video). All videos are in raw YUV420 format with a reso-
lution of 768 × 432 pixels, ∼10 s in duration, and at frame
rates of 25 or 50 fps. There are four distortion types in this
database: MPEG-2 compression (MPEG-2), H.264 compres-
sion (H.264), simulated transmission of H.264-compressed
bit-streams through error-prone IP networks (IPPL), and
simulated transmission of H.264-compressed bit-streams
through error-prone wireless networks (WLPL). Three or
four levels of distortion are present for each distortion type.

4.1.2 IVPL video database

The IVPL HD video database62 developed at the Chinese
University of Hong Kong consists of 10 reference videos
and 128 distorted videos. All videos in this database are
in raw YUV420 format with a resolution of 1920 ×
1088 pixels, ∼10 s in duration, and at a frame rate of
25 fps. There are four types of distortion in this database:
Dirac wavelet compression (DIRAC, three levels), H.264
compression (H.264, four levels), simulated transmission
of H.264-compressed bit-streams through error-prone IP
networks (IPPL, four levels), and MPEG-2 compression
(MPEG-2, three levels). To reduce the computation time,
we rescaled the videos to 960 × 544 using FFMPEG soft-
ware64 with its default configuration.

4.1.3 CSIQ video database

The CSIQ video database63 developed by the authors at
Oklahoma State University consists of 12 reference videos
and 216 distorted videos. All videos in this database are
in raw YUV420 format with a resolution of 832 ×
480 pixels, a duration of 10 s, and span a range of various
frame rates: 24, 25, 30, 50, and 60 fps. Each reference video
has 18 distorted versions with six types of distortion; each
distortion type has three different levels. The distortion
types consist of four video compression distortion types
[Motion JPEG (MJPEG), H.264, HEVC, and wavelet com-
pression using SNOW codec64] and two transmission-based
distortion types [packet-loss in a simulated wireless network
(WLPL) and additive white Gaussian noise (AWGN)]. The
experiment was conducted following the SAMVIQ testing
protocol65 with 35 subjects.

4.2 Algorithms and Performance Measures
We compared ViS3 with PSNR25 and recent full-reference
video quality assessment algorithms for which code is
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publicly available, VQM,12 MOVIE,4 and TQV,8 on the three
video databases. PSNR was applied on a frame-by-frame
basis, VQM and MOVIE were applied using their default
implementations and settings, and TQV was applied using
its original training parameters. For ViS3, we used a GOF
size of N ¼ 8.

Before evaluating the performance of each algorithm on
each video database, we applied a four-parameter logistic
transform to the raw predicted scores, as recommended by
video quality experts group (VQEG) in Ref. 31. The four-
parameter logistic transform is given by

fðxÞ ¼ τ1 − τ2

1þ exp

�
−
x − τ3
jτ4j

� þ τ2; (34)

where x denotes the raw predicted score and τ1, τ2, τ3, and τ4
are free parameters that are selected to provide the best fit of
the predicted scores to the subjective rating scores.

Following VQEG recommendations in Ref. 31, we
employed the Spearman rank-order correlation coefficient
(SROCC) to measure prediction monotonicity, and
employed the Pearson linear correlation coefficient (CC)
and the root mean square error (RMSE) to measure predic-
tion accuracy. The prediction consistency of each algorithm
was measured by two additional criteria: the outlier ratio

(OR5) and the outlier distance (OD26). OR is the ratio of
number of false scores predicted by the algorithm to the
total number of scores. A false score is defined as the trans-
formed score lying outside the 95% confidence interval of
the associated subjective score.5 In addition, OD indicates
how far the outliers fall outside of the confidence interval.
The OD is measured by the total distance from all outliers
to their closest edge points of the corresponding confidence
interval.26

4.3 Overall Performance
The performance of each algorithm on each video database is
shown in Table 1 in terms of the five criteria (SROCC, CC,
RMSE, OR, and OD). The best-performing algorithm is
bolded, and the second best-performing algorithm is itali-
cized and bolded. These data indicate that ViS3 is the
best-performing algorithm on all three video databases in
terms of all five evaluation criteria. The performances of
ViS1 and ViS2 are also noteworthy.

In terms of prediction monotonicity (SROCC), ViS3 is
the best-performing algorithm on all three databases. On
the LIVE and CSIQ databases, ViS3 and TQV are the two
best-performing algorithms. On the IVPL database, ViS3
and MOVIE are the two best-performing algorithms. A sim-
ilar trend in performance is observed in terms of prediction
accuracy (CC and RMSE).

Table 1 Performances of ViS3 and other algorithms on the three video databases. The best-performing algorithm is bolded and the second best-
performing algorithm is italicized. Note that ViS3 is the best-performing algorithm on all three databases.

Peak SNR
(PSNR)

Video quality
metric (VQM)

Motion-based video
integrity evaluation

(MOVIE) TQV ViS3 ViS1 ViS2

Spearman rank-order
correlation coefficient
(SROCC)

LIVE 0.523 0.756 0.789 0.802 0.816 0.762 0.736

IVPL 0.728 0.845 0.880 0.701 0.896 0.872 0.817

CSIQ 0.579 0.789 0.806 0.814 0.841 0.757 0.831

CC LIVE 0.549 0.770 0.811 0.815 0.829 0.785 0.746

IVPL 0.723 0.847 0.879 0.722 0.896 0.863 0.823

CSIQ 0.565 0.769 0.788 0.795 0.830 0.739 0.830

Root mean square error LIVE 9.175 7.010 6.425 6.357 6.146 6.807 7.313

IVPL 0.730 0.561 0.504 0.731 0.470 0.534 0.601

CSIQ 13.724 10.633 10.231 10.090 9.273 11.197 9.279

Outlier ratio LIVE 2.00% 1.33% 0% 0% 0% 0% 2.00%

IVPL 7.81% 0.78% 1.56% 7.81% 0.78% 1.56% 4.69%

CSIQ 12.96% 5.09% 4.17% 4.63% 3.70% 7.41% 3.24%

Outlier distance LIVE 11.479 5.385 0 0 0 0 9.076

IVPL 3.422 0.411 0.222 2.556 0.616 1.085 1.005

CSIQ 169.183 56.334 44.635 40.946 28.190 59.619 30.546
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In terms of prediction consistency measured by OR, on
the LIVE database, three algorithms (MOVIE, TQV, and
ViS3) have an OR of zero, which indicates that they do
not yield any outliers. On the IVPL database, both ViS3
and VQM have only one outlier. On the CSIQ database,
ViS3 and MOVIE are the two algorithms with the least num-
ber of outliers.

In terms of OD, on the LIVE database, three algorithms
(MOVIE, TQV, and ViS3) have an OD of zero because they
do not have any outliers. On the IVPL database, MOVIE and
VQM have the smallest OD. Although ViS3 yields only one
outlier on the IVPL database as well as VQM, ViS3 has
larger OD because this outlier lies further away from its con-
fidence interval. This indicates that ViS3 has a weakness
on the IPPL distortion, to which the outlier belongs.
Furthermore, on the CSIQ database, ViS3 and TQV yield
the smallest OD values.

Observe that ViS1 and ViS2 yield different relative per-
formances depending on the database. ViS1 shows better
predictions than ViS2 on the LIVE and IVPL databases.
However, ViS2 shows better predictions than ViS1 on the
CSIQ database. Generally, ViS3 shows higher SROCC
and CC and lower RMSE, OR, and OD than either ViS1
or ViS2 alone. Nonetheless, it may be possible to combine
ViS1 and ViS2 in an adaptive fashion for even better predic-
tion performance, and such an adaptive combination remains
an area for future research.

The scatter-plots of logistic-transformed ViS3 values ver-
sus DMOS on the three databases are shown in Fig. 12. The
plots show a highly correlated trend between the logistic-
transformed ViS3 values versus DMOS values. For all the
three databases, the predictions are homoscedastic; i.e.,
there are generally no subpopulations of videos/distortion
types for which ViS3 yields lesser or greater residual vari-
ance in the predictions. These residuals are used for an analy-
sis of statistical significance in Sec. 4.3.3.

4.3.1 Performance on individual types of distortion

We measured the performance of ViS3 and other algorithms
on individual types of distortion for videos from the three
databases. For this analysis, we applied the logistic transform
function to all predicted scores of each database, then di-
vided the transformed scores into separate subsets according
to the distortion types, and then measured the performance
criteria in terms of SROCC and CC for each subset. Table 2
shows the resulting SROCC and CC values.

In general, VQM, MOVIE, and ViS3 all perform well on
the WLPL distortion; these three algorithms show competi-
tive and consistent performance on the WLPL distortion for
both the LIVE and CSIQ databases. For the H.264 compres-
sion distortion, ViS3 and MOVIE perform well and con-
sistently across all subsets of H.264 videos on all three
databases. ViS3 and MOVIE are also competitive on the

Fig. 12 Scatter-plots of logistic-transformed scores predicted by ViS3 versus subjective scores on the
three databases. Notice that all the plots are homoscedastic. The R values denote correlation coefficient
between the logistic-transformed scores and subjective scores (DMOS).

Journal of Electronic Imaging 013016-18 Jan–Feb 2014 • Vol. 23(1)

Vu and Chandler: ViS3: an algorithm for video quality assessment via analysis of spatial. . .



Table 2 Performances of ViS3 and other quality assessment algorithms measured on different types of distortion on the three video databases.
The best-performing algorithm is bolded and the second best-performing algorithm is italicized.

Database Distortion PSNR VQM MOVIE TQV ViS3

SROCC

LIVE WLPL 0.621 0.817 0.811 0.754 0.845

IPPL 0.472 0.802 0.715 0.742 0.788

H.264 0.473 0.686 0.764 0.769 0.757

MPEG-2 0.383 0.718 0.772 0.785 0.730

IVPL DIRAC 0.860 0.891 0.888 0.786 0.926

H.264 0.866 0.862 0.823 0.672 0.876

IPPL 0.711 0.650 0.858 0.629 0.807

MPEG-2 0.738 0.791 0.823 0.557 0.834

CSIQ H.264 0.802 0.919 0.897 0.955 0.920

WLPL 0.851 0.801 0.886 0.842 0.856

MJPEG 0.509 0.647 0.887 0.870 0.789

SNOW 0.759 0.874 0.900 0.831 0.908

AWGN 0.906 0.884 0.843 0.908 0.928

HEVC 0.785 0.906 0.933 0.902 0.917

CC

LIVE WLPL 0.657 0.812 0.839 0.777 0.846

IPPL 0.497 0.800 0.761 0.794 0.816

H.264 0.571 0.703 0.790 0.788 0.773

MPEG-2 0.395 0.737 0.757 0.794 0.746

IVPL DIRAC 0.878 0.898 0.870 0.811 0.936

H.264 0.855 0.869 0.845 0.744 0.898

IPPL 0.673 0.642 0.842 0.735 0.802

MPEG-2 0.718 0.836 0.824 0.533 0.912

CSIQ H.264 0.835 0.916 0.904 0.965 0.918

WLPL 0.802 0.806 0.882 0.784 0.850

MJPEG 0.460 0.641 0.882 0.871 0.800

SNOW 0.769 0.840 0.898 0.846 0.908

AWGN 0.949 0.918 0.855 0.930 0.916

HEVC 0.805 0.915 0.937 0.913 0.933
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MPEG-2 compression distortion and the IPPL distortion on
both the LIVE and IVPL databases.

In particular, on the LIVE database, ViS3 has the best per-
formance on the WLPL distortion; VQM and ViS3 have the
best performance on the IPPL distortion; ViS3, MOVIE, and
TQV are the three best-performing algorithms on the H.264
compression distortion; and TQV and MOVIE are the two
best-performing algorithms on the MPEG-2 compression
distortion.

The low performance of the ViS3 algorithm on H.264 and
MPEG-2 compression types in the LIVE video database is
due to the outliers corresponding to specific videos as shown
in Fig. 13; the outliers are marked by the red square markers.
For H.264, the outliers correspond to the video riverbed
where the water’s movement significantly masks the blurring
imposed by the compression. However, ViS3 underestimates
this masking and, thus, overestimates the DMOS. For
MPEG-2, the sunflower seeds in the video sunflower gener-
ally impose signficant masking of the MPEG-2 blocking arti-
facts. However, there are select frames in this video in which
the blocking artifacts become highly visible (owing perhaps
to failed motion compensation), yet ViS3 does not accurately
capture the visibility of these artifacts and, thus, underesti-
mates the DMOS. These types of interactions between the
videos and distortions are issues that certainly warrant future
research.

On the IVPL database, ViS3 yields the best performance
on three types of distortion (DIRAC, H.264, and MPEG-2);
ViS3 yields the second best performance on the IPPL distor-
tion, on which MOVIE is the best-performing algorithm.
VQM and MOVIE are the second best-performing
algorithms on the MPEG-2 distortion. PSNR, VQM, and

MOVIE are also competitive on both the DIRAC and
H.264 distortion.

On the CSIQ database, TQV and ViS3 are the two best-
performing algorithms on the H.264 compression distortion;
ViS3 and MOVIE are the two best-performing algorithms on
three types of distortion (WLPL, SNOW, and HEVC);
MOVIE and TQV are the two best-performing algorithms
on the MJPEG. On the AGWN distortion, ViS3 and TQV
are competitive with PSNR, which is well known to perform
well for white noise.

Generally, ViS3 excels on the H.264 compression distor-
tion and the wavelet-based compression distortion (DIRAC,
SNOW), and ViS3, VQM, and MOVIE excel on the WLPL
distortion. ViS3 also performs well on the MPEG-2, HEVC,
and AWGN distortion. However, ViS3 does not perform well
on the MJPEG compression distortion compared to MOVIE
and TQV.

4.3.2 Performance with different GOF sizes

As we mentioned in Sec. 3.1, for ViS1, the size of the GOF
used in Eqs. (9), (11), and (12) is a user-selectable parameter
(N). The results presented in the previous subsection were
obtained with a GOF size of N ¼ 8. To investigate how
the prediction performance varies with different GOF
sizes, we computed SROCC and CC values for ViS1 and
ViS3 using values of N ranging from 4 to 16. The results
of this analysis are listed in Table 3.

As shown in the upper portion of Table 3, the performance
of ViS1 tends to increase with larger values of N. This trend
may partially be attributable to the fact that a larger GOF size
can give rise to a more accurate estimate of the motion and,
thus, perhaps a more accurate account of the temporal

Fig. 13 Scatter-plots of logistic-transformed scores predicted by ViS3 versus subjective scores on the
H.264 and MPEG-2 distortion of the LIVE database. The second row shows representative frames of
the two videos corresponding to the outliers (red square markers in the plots).
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masking. Nonetheless, as demonstrated in the lower portion
of Table 3, ViS3 is relatively robust to small changes in N.
The choice of N ¼ 8 generally provides good performance
on all three databases. However, the optimal choice of N
remains an open research question.

4.3.3 Statistical significance

To assess the statistical significance of differences in perfor-
mances of ViS3 and other algorithms, we used an F-test to
compare the variances of the residuals (errors) of the algo-
rithms’ predictions.66 If the distribution of residuals is suffi-
ciently Gaussian, an F-test can be used to determine the
probability that the residuals are drawn from different distri-
butions and are thus statistically different.

To determine whether the residuals of an algorithm have
Gaussian distributions, we performed the Jarque–Bera (JB)
test (see Ref. 58) on the residuals to measure the JBSTAT
value. If the JBSTAT value is smaller than a critical value,
then the distribution of residuals is significantly Gaussian.
If the JBSTAT value is greater than the critical value, then
the distribution of residuals is not Gaussian. The JB test
results show that for the LIVE database, all the algorithms
pass the JB test and their residuals have Gaussian distribu-
tions. On the IVPL database, only PSNR does not pass
the JB test. On the CSIQ database, only VQM and ViS3
pass the JB test.

We performed an F-test with 95% confidence to compare
the residual variances of the algorithms whose distributions
of residuals are significantly Gaussian. If the variances are

significantly different, we conclude that the two algorithms
are significantly different. The smaller the variance of resid-
uals, the better the prediction performance of the algorithm.

Table 4 shows the F-test results between each pair of the
algorithms whose distributions of residuals are significantly
Gaussian. A “0” value implies that residual variances of two
algorithms are not significantly different. A “+“ sign implies
that the algorithm indicated by the column has significantly
smaller residual variance than the algorithm indicated by the
row, and therefore, it has better performance. A “−“ sign
implies that the algorithm indicated by the column has sig-
nificantly larger residual variance than the algorithm indi-
cated by the row, and therefore, it has worse performance.

As seen from Table 4, on the LIVE database, the variance
of residuals yielded by PSNR is significantly larger than the
variances of residuals yielded by the other algorithms, and
therefore, PSNR is significantly worse than the other algo-
rithms. The difference in residuals of ViS3 and either of
VQM, MOVIE, or TQV is not statistically significant.
On the IVPL database, the variance of residuals yielded
by TQV is significantly larger than the variances of residuals
yielded by VQM, MOVIE, and ViS3, and therefore, VQM,
MOVIE, and ViS3 are significantly better than TQV on this
database. On both IVPL and CSIQ databases, the variance of
residuals yielded by VQM is significantly larger than the
variance of residuals yielded by ViS3, and therefore, ViS3
is significantly better than VQM on these databases.

Although ViS3 is not significantly better than MOVIE on
any of the three databases, it should be noted that MOVIE is
not significantly better than VQM on any of the three

Table 3 Performances of ViS3 on the three video databases with different group of frames (GOF) size. Note that ViS3 is robust with the change of
the GOF size on all three databases.

GOF size 4 6 8 10 12 16

ViS1

SROCC LIVE 0.754 0.759 0.762 0.767 0.770 0.768

IVPL 0.868 0.871 0.872 0.871 0.873 0.874

CSIQ 0.751 0.753 0.757 0.758 0.759 0.760

CC LIVE 0.778 0.783 0.785 0.789 0.791 0.793

IVPL 0.860 0.862 0.863 0.865 0.866 0.868

CSIQ 0.733 0.736 0.739 0.740 0.742 0.743

ViS3

SROCC LIVE 0.818 0.817 0.816 0.814 0.813 0.812

IVPL 0.897 0.897 0.896 0.897 0.897 0.896

CSIQ 0.840 0.840 0.841 0.841 0.841 0.841

CC LIVE 0.833 0.831 0.829 0.828 0.827 0.825

IVPL 0.896 0.896 0.896 0.896 0.897 0.896

CSIQ 0.829 0.829 0.830 0.830 0.830 0.830
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database, while ViS3 is significantly better than VQM on the
IVPL and CSIQ databases. Moreover, MOVIE requires more
computation time than ViS3. Specifically, using a modern
computer (Intel Quad Core at 2.66 GHz, 12 GB RAM
DDR2 at 6400 MHz, Windows 7 Pro 64-bit, MATLAB®
R2011b) to estimate the quality of a 10-s video of size 352 ×
288 (300 frames total), MOVIE requires ∼200 min, whereas
basic MATLAB® implementations of VQM and ViS3
require ∼1 and 7 min, respectively.

4.3.4 Summary, limitations, and future work

Through testing on various video-quality databases, we have
demonstrated that ViS3 performs well in predicting video
quality. It not only excels at VQA for whole databases
with varying types of distortion and varying distortion levels,
but also performs well on videos with a specific type of dis-
tortion. Our performance evaluation demonstrates that ViS3
is either better than or statistically tied with current state-of-
the-art VQA algorithms. A statistical analysis also shows that
ViS3 is significantly better than PSNR, VQM, and TQV in
predicting the qualities of videos from specific databases.

Yet, ViS3 is not without its limitations. One important
limitation is in regards to the potentially large memory
requirements for long videos. The STS images of a long
video can require a prohibitively large width or height for
the dimension corresponding to time. In this case, one sol-
ution would be to divide the video into small chunks across
time, where each chunk has a length of ∼500 to 600 frames.

The final result can be estimated via the mean of the ViS3
values computed for each chunk.

Another limitation of ViS3 is that it currently takes
into account only the luminance component of the video.
Further improvements may be realized by also considering
degradations in chrominance. Another possible improvement
might be realized by employing a more accurate pooling
model of the spatiotemporal responses used in the spatiotem-
poral dissimilarity stage.

Equation (33) gives the same weight to the spatial distor-
tion and spatiotemporal dissimilarity values. However, it
would seem possible to adaptively combine the two values
in a way that more accurately reflects the visual contribution
of each degradation to the overall quality degradation. Our
preliminary attempts to select the weights based on the video
motion magnitudes, the difference in motion, or the variance
of spatial distortion have not yielded significant improve-
ments. We are currently conducting a psychophysical
study to better understand if and how the spatial distortion
and spatiotemporal dissimilarity values should be adaptively
combined.

The incorporation of visual-attention modeling is another
avenue for potential improvements. Some studies have
shown that visual attention can be useful for quality assess-
ment (e.g., Refs. 39, 67, and 68; see also Ref. 69). One pos-
sible technique for incorporating such data into ViS3 would
be to weight the maps generated during the computation of
both ViS1 and ViS2 based on estimates of visual gaze data or
regions of interest in both space and time. Another interest-
ing avenue of future research would be to compare the ViS1
and ViS2 maps with gaze data to identify any existing rela-
tionships and, perhaps, determine techniques for predicting
gaze data based on the STS images.

5 Conclusions
In this paper, we have presented a VQA algorithm, ViS3,
that analyzes various two-dimensional space-time slices of
the video to estimate perceived video quality degradation
via two different stages. The first stage of the algorithm adap-
tively applies two strategies in the MAD algorithm to groups
of video frames to estimate perceived video quality degrada-
tion due to spatial distortion. An optical-flow-based weight-
ing scheme is used to model the effect of motion on the
visibility of distortion. The second stage of the algorithm
measures spatiotemporal correlation and applies an HVS-
based model to the STS images to estimate perceived
video quality degradation due to spatiotemporal dissimilar-
ity. The overall estimate of perceived video quality degrada-
tion is given as the geometric mean of the two measurements
obtained from the two stages. The ViS3 algorithm has been
shown to perform well in predicting quality of videos from
the LIVE database,24 the IVPL database,62 and the CSIQ
database.63 Statistically significant improvements in predict-
ing subjective ratings are achieved in comparison to a variety
of existing VQA algorithms. The online supplement to this
paper is available in Ref. 60.
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