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ABSTRACT. Purpose: Monitoring radiation dose and time parameters during radiological inter-
ventions is crucial, especially in neurointerventional procedures, such as aneurysm
treatment with embolization coils. The algorithm presented detects the presence of
these embolization coils in medical images. It establishes a bounding box as a refer-
ence for automated collimation, with the primary objective being to enhance the
efficiency and safety of neurointerventional procedures by actively optimizing image
quality while minimizing patient dose.

Methods: Two distinct methodologies are evaluated in our study. The first involves
deep learning, employing the Faster R-CNN model with a ResNet-50 FPN as a
backbone and a RetinaNet model. The second method utilizes a classical blob
detection approach, serving as a benchmark for comparison.

Results: We performed a fivefold cross-validation, and our top-performing model
achieved mean mAP@75 of 0.84 across all folds on validation data and mean
mAP@75 of 0.94 on independent test data. Since we use an upscaled bounding
box, achieving 100% overlap between ground truth and prediction is not necessary.
To highlight the real-world applications of our algorithm, we conducted a simulation
featuring a coil constructed from an alloy wire, effectively showcasing the implemen-
tation of automatic collimation. This resulted in a notable reduction in the dose area
product, signifying the reduction of stochastic risks for both patients and medical
staff by minimizing scatter radiation. Additionally, our algorithm assists in avoiding
extreme brightness or darkness in X-ray angiography images during narrow collima-
tion, ultimately streamlining the collimation process for physicians.

Conclusion: To our knowledge, this marks the initial attempt at an approach
successfully detecting embolization coils, showcasing the extended applications
of integrating detection results into the X-ray angiography system. The method
we present has the potential for broader application, allowing its extension to detect
other medical objects utilized in interventional procedures.
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1 Introduction

1.1 Radiation Dose Management in Endovascular Coil Embolization: Tackling
Clinical Challenges for Safer Neuroradiology

Cerebral aneurysms pose a significant and potentially fatal health concern for millions of people
worldwide. In the United States, an estimated population of 6.8 million have been diagnosed with
unruptured aneurysm in the brain.1 These fragile blood vessel bulges require immediate medical
attention to prevent the catastrophic consequences of rupture, which can lead to severe brain
damage or even death.2 In addressing this medical challenge, endovascular coil embolization
has emerged as a key intervention.

Endovascular coil embolization is a minimally invasive procedure that has brought notable
advancements to the treatment of cerebral aneurysms.3 This method inserts platinum coils
through a microcatheter to restrict blood flow to an aneurysm, reducing the risk of further
enlargement or rupturing completely. Platinum coils excel in effectively sealing aneurysms, and
they are also selected for their biocompatibility.4,5 Since they consist of platinum, their visibility
in X-ray imaging is very good.

Despite advancements in neuroradiology interventions, such as endovascular coil emboli-
zation, a major challenge persists, which includes effectively managing radiation dosage and
procedural time. Hence, the effective management of these factors is essential in neuroradiology
due to the lengthy and time-consuming procedures involved.

To address the challenges posed by radiation exposure, collimation is employed as one
of the techniques in radiological procedures.6,7 It enables angiographic X-ray machines to
narrow the radiation field to only the necessary areas for diagnosis and therapy. This reduces
the dose area product (DAP), which measures cumulative air kerma over the irradiated area
and lowers radiation risks for patients and medical personnel. Additionally, it may enhance
image quality8 by boosting the signal-to-noise ratio, reducing the scatter radiation released
from the patient.

However, the current practice of collimation relies on manual adjustments of the collimator.
Even though the manual process is effective, it is time-consuming and can potentially distract the
operator during a procedure that requires absolute focus and precision.

Given the nature of these challenges, there is a need for methodologies that manage radiation
dosage and procedural time during endovascular coil embolization. This need considers not only
patient safety but also improving image quality and operational efficiency.

1.2 Contributions and Structure of the Paper
In our research, we propose a technique aimed at automating the detection of coils and precise
alignment of collimator during neuroradiology procedures, with the goal of minimizing the
(DAP) administered. In this approach, we use deep learning to train a model specifically designed
for coil detection, which is then compared to a traditional blob detection method serving as a
benchmark. The deep learning model outputs a bounding box that accurately pinpoints the loca-
tion of the coil, serving as a reference for automatic collimation.

Our study showcases the practical application of this coil detection method, demonstrating
its significance in reducing DAP. Additionally, we provide evidence supporting the claim that
automatic collimation, facilitated by our deep learning model, reduces the time required for set-
ting up collimation around the coil compared to manual methods. This contribution of DAP
reduction and time efficiency illustrates its potential to enhance both safety and efficiency in
neuroradiology procedures.

The paper is organized into the following sections. In Sec. 2, we explore the related work
and theory on angiography systems. Section 3 outlines our approach, including dataset details,
model training, and experimental setup. Section 4 demonstrates practical execution. Section 5
presents the results of our deep learning approach compared to classical blob detection and
explains its application. Section 6 summarizes insights and contributions and suggests future
directions.

Ravi et al.: Optimizing neurointerventional procedures: an algorithm. . .

Journal of Medical Imaging 044003-2 Jul∕Aug 2024 • Vol. 11(4)



2 Literature Review

2.1 Radiation Physics in Angiography: Strategies for Exposure Control in
X-Ray Imaging

The angiography system utilizes X-ray radiation for medical imaging, offering valuable diag-
nostic information. However, it is essential to assess potential risks associated with prolonged
exposure. These risks include deterministic effects, which pose immediate threats, and stochastic
effects, which occur randomly without a specific threshold. The likelihood of stochastic risks
increases proportionally with radiation exposure, and the severity of these effects is not
dependent on the radiation dose. The primary stochastic effects include cancer and genetic
mutations.9,10 This emphasizes the importance of a balanced approach in maximizing the benefits
of angiography while minimizing associated risks.

DAP serves as a measurable indicator for the relative estimation of stochastic risks in inter-
ventional X-ray imaging, irrespective of anatomical factors.11,12 Air kerma, in units of “gray”
(Gy), quantifies kinetic energy per unit mass.13 DAP is calculated by multiplying the patient’s
exposed surface area by the air kerma. Operators and staff, while facing potential stochastic
effects, are not at risk of deterministic damages as their total air kerma remains below typical
thresholds.

Angiographic X-ray machines include collimators to narrow the irradiation area, reduce
scatter radiation, and enhance image quality.14–16 Beyond collimation, careful selection of param-
eters by exposure control is essential. Automatic exposure rate control (AERC), widely used,
monitors and halts exposure based on predetermined thresholds.16 AERC regulates between
3 and 5 exposure parameters and adapts to individual patient parameters, ensuring optimal
exposure.17,18

In digital flat-panel X-ray systems, incident intensity is determined by the flat-panel detector.
Although AERC is recommended for optimizing radiation exposure, challenges can arise in
specific scenarios. For instance, when imaging smaller regions of interest, such as the arm
or legs, where the imaged area is relatively small compared to the background, direct radiation
hitting the detector can lead to premature exposure termination by the AERC. This premature halt
introduces a high level of quantum noise in digital images.16 Another challenge occurs when
imaging large metal objects. Metal objects tend to absorb more radiation than their surroundings,
resulting in overexposed background areas. In such cases, the image optimization may prioritize
imaging through metal objects rather than the surrounding anatomy,16,19 which may not be
essential.

Implementing a detection algorithm can be advantageous in automatically identifying and
collimating around metallic objects, thereby guiding AERC for optimal imaging outcomes. This
not only enhances imaging precision but also contributes to a notable reduction in air kerma, an
aspect that is elaborated in Sec. 5. The algorithm would be ideally used during the deployment of
the coil. Since we use the raw data for training, it would not affect the final detection.

2.2 Related Work
The rise of deep learning has introduced a variety of object detection techniques, including two-
stage detectors, such as Fast R-CNN and Mask R-CNN,20,21 as well as one-stage detectors, such
as the YOLO series,22–25 known for their speed. The transformer,26 initially used in natural lan-
guage processing, has emerged as a cutting-edge method for image classification.27 Recent
advancements include nonhierarchical vision transformer architectures and ViT-YOLO,28 a
hybrid one-stage detector. Ma et al.29 surveyed various object detection methods, exploring both
deep learning and classical techniques for microorganism detection. Classical computer vision
methods like Haar wavelet transform30 for face detection and blob detection31 for fruit detection
have been significant. These blob detection methods can be differentiation-based (e.g., Laplacian
of Gaussian,32 difference of Gaussian,33 and determinant-of-Hessian33) or thresholding-based.34

On the deep learning front, Bang et al.35 focused on AI-based collimation in fluoroscopy-guided
endoscopic procedures, utilizing a secondary collimator to reduce radiation exposure. Their
approach identifies activities through region of interest (ROI) detection, guiding the secondary
collimator. In our project, we employ Faster R-CNN with a ResNet-50 FPN backbone and
RetinaNet for coil detection, exploring its clinical benefits in neuroradiology interventions.
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3 Methods

3.1 Deep Learning Network Architectures
In our experiment, we trained two distinct deep learning models: a two-stage network, Faster
R-CNN,36 featuring a ResNet-50 FPN (feature pyramid network) as its backbone,37 and a
one-stage network, RetinaNet. Both networks share a common feature extractor, employing
an FPN with a ResNet-50 backbone.

The FPN serves as a feature extractor by taking an input image and generating feature maps
at various levels in a fully convolutional manner.37 This approach ensures proportionally sized
feature maps, enhancing the model’s ability to detect objects at different scales. The ResNet-50
architecture is utilized as the backbone for this feature extraction process.

The following sections delve into the specific details of each architecture.

3.1.1 Faster-RCNN

This model is designed for object detection tasks and operates in two stages: (a) region proposal
network (RPN) based on deep convolution layers and (b) Fast R-CNN detector. The FPN is a
crucial component, consisting of a bottom-up pathway and a top-down pathway that generates
feature maps at various scales. The resulting feature maps from the FPN are input to the RPN,
which produces rectangular object proposals with associated objectness scores.38 These propos-
als, representing single-scaled features, undergo ROI pooling and are then processed by the Fast
R-CNN head to yield the final predictions and bounding boxes (for a visual representation,
refer to Fig. 1).

3.1.2 RetinaNet

RetinaNet, a one-stage model, shares its feature extractor with the Faster R-CNN model.
However, RetinaNet enhances this feature extractor by incorporating two subnetworks: one for
classifying anchor boxes and another for regressing from anchor boxes to actual object boxes,
thereby functioning as a single-stage detector. The design aims to streamline the network for
faster detection without compromising accuracy. The RetinaNet model adopts the focal loss
function. This dynamic scaling cross-entropy loss incorporates a scaling factor that diminishes
to zero as confidence in the correct class increases39 (for a visual representation, refer to Fig. 2).

3.2 Blob Detection
In our dataset, the coils are represented as blobs, where “blobs” refer to clusters of interconnected
pixels sharing similar characteristics. To benchmark the performance against a deep learning
approach, we evaluate a classical blob detection method on the independent test data. This
method employs a thresholding-based technique from the cv2 module in Python.34 Figure 3
illustrates the schematic representation of the blob detector used in this paper.

Fig. 1 Proposed method for object detection is illustrated as follows: an input image is fed into the
FPN, generating feature maps at various scales. These feature maps undergo processing in the
RPN, yielding object proposals accompanied by objectness scores. The generated proposals,
along with the feature maps, serve as input to the ROI pooling, where the feature maps are
converted to a fixed dimension. Subsequently, these data are input into the Fast R-CNN detector,
comprising two fully connected layers (FC layers) for proposal and feature map processing. The
output of these FC layers is then directed through another FC layer for classification, determining
the class label, and an additional FC layer for regression, obtaining the bounding box coordinates.
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The steps involved in the proposed methodology of the blob detection are as follows.

• The input image is blurred using Gaussian blur to enhance the variance and diminish
local peaks.

• The blurred input images are passed through the blob detector, where they undergo thresh-
olding, resulting in multiple binary images.

• White pixels in each binary image are grouped into blobs.
• Centers for these binary blobs are computed, and a minimum distance threshold is set.

If the distance between any two blobs is below this minimum, the blobs are merged.
• The centers, along with the radii, are then calculated and returned for the newly merged blobs.

The content presented here is entirely self-authored; however, it has undergone paraphrasing
with the assistance of ChatGPT to express the information in varied wording.

4 Experiments
This section provides comprehensive insights into data acquisition and preparation, offering a
detailed examination of the experimental setup. This encompasses the architecture of both
the deep learning network and blob detection, along with the evaluation metrics employed.
Furthermore, we provide the details of the specific configuration utilized to showcase the
application of the coil detection method.

4.1 Data Characteristics
The dataset consists of radiographs obtained during neuroradiology interventions, comprising
sequences with varying numbers of frames. The dataset comprises patient data with varying
numbers of sequences per patient, depending on whether the procedure is diagnostic or

FPN

Image

Classifier
Subnet

Class + Bbox 
    Subnet

Bbox
Subnet

W x H x 256 W x H x 256
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Fig. 2 Proposed method for object detection is illustrated as follows: the input image is fed into the
FPN, which generates feature maps in different scales, similar to Faster-RCNN. The class +
bounding box subnet is attached to every image output from FPN, one for classifying the anchor
boxes and the other for regressing from anchor boxes to the object bounding box. The class
subnetwork, located in the top layer generates a class label, while the bottom layer’s bounding
box regression subnetwork generates the bounding box coordinates.39

Fig. 3 Illustration of the proposed methodology of the Blob detection.
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interventional. Diagnostic procedures contain fewer sequences as the procedures are conducted
to examine potential vascular issues or confirm intervention success at a later date. In contrast,
interventional procedures result in a larger number of acquired sequences, due to increased
complexity and ultimately longer examination times. For training purposes, only one frame con-
taining the coil(s) from each sequence was considered. The dataset includes images consisting of
varying numbers of coils with different shapes and sizes. The database also includes images of
coils acquired in the presence of other medical devices like catheters, guidewires, and so on.

Figure 4 presents example coil images used in this study. The images are used in a so-called
raw format. Raw data in this context refer to images directly obtained from the X-ray angiog-
raphy system without undergoing any preprocessing or filtering. The images are only corrected
for detector artifacts. The data also do not contain any patient information. Since the project aims
at real-time detection, raw data were used.

Given the variability in imaging and acquisition parameters among surgeons and patient
demographics, we employed a multisite dataset consisting of 160 images from 13 patients
obtained from Siemens X-ray biplane angiography machines. Hence, every coil image used pro-
vided two different projections of the same coil. The dataset encompasses images from both
diagnostic and interventional procedures. However, there is an imbalance in patient distribution,
with fewer images from patients undergoing diagnostic procedures compared to those under-
going an intervention, as illustrated in Fig. 5. The images also included coils with different zoom
formats and levels of collimation, various acquisition phases in the procedure.

4.1.1 Data preparation and labeling

Given that the images are in raw format, adjustments are made to correct for flip, and rotation, and
the collimator area is cropped. The collimator cropping parameters necessitate the images to be
initially corrected for flipping and rotation before applying them. Despite the collimator being a
black region with nondiagnostic information, its presence adds noise during training. To mitigate
potential adverse effects during neural network optimization, the collimator region was removed
using specific parameters obtained and stored during acquisitions.40 The collimator-cropped
images underwent normalization using the standard scaler technique (zero mean unit vari-
ance)41 and were subsequently saved as TIFF files. These files were then utilized for labeling
purposes using the labelImg tool42 and for training purposes in the same format. The annotation
and evaluation of this data are based on the Pascal VOCmetrics.43 The images were self-annotated
under the supervision of clinical experts with more than 10 years of experience to ensure accuracy
and reliability in object identification and the annotated coils were assigned to coil class. For faster

Fig. 4 Example coil images used in the study: (a) example image representing three coils of
different shapes and (b) example image representing coils along with catheters and guidewires.
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training, original variable-resolution images were resized to a fixed resolution of 512 × 512 before
input to the deep learning network.

4.1.2 Data distribution

To ensure robust evaluation, a fivefold cross-validation approach was employed. To account for
the imbalance in the patient distribution, we split the data into five folds such that every patient
has been part of the validation data at least in one of the five folds to avoid any bias. The remain-
ing data are used for training. This split is also performed patient wise so for every fold there are
either two or three patients in the validation set and the rest are in training. The data distribution
between training, and validation sets is presented in Table. 1. We also present the patient number
involved in every fold of validation data.

Additionally, an independent test set, sourced from a single site, featuring 12 images that
included coils of different shapes and sizes was used to evaluate the best-performing model.

4.2 Training and Validation Protocol
In this section, we delve into the training process of our deep learning model and the working of
the blob detector. We discuss the data inputs utilized and the training methodology, including
hyperparameter settings.

4.2.1 Faster-RCNN

The data distribution used for the model is described in Sec. 4.1.2. The normalized TIFF images
and the bounding box annotations are provided as input to the pretrained Faster-RCNNmodel for

Fig. 5 Plot depicting patient distribution. The x axis represents the patient number and the y axis
represents the number of images corresponding to that patient.

Table 1 Number of images distributed between the training and validation data in all the five folds.
It also presents the patient number utilized for each fold in validation data.

Fold Training Validation Patient number in validation data

1 128 32 9,12,1,13

2 131 29 2,8

3 131 29 3,4

4 130 30 6,11,10,7

5 120 40 5
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training. The output of this model is bounding box coordinates for the detected object and
the corresponding label which is the detected coil in our context.

To enhance the performance of the model, we also use data augmentation. The techniques
used are flip and random rotation of 90 deg, Gaussian blurring, and pixel dropout. The data
augmentation is performed only on the training data. A batch size of 2 was used due to the
image’s high resolution and limited memory capability. Due to this, the learning rate used was
0.0001, and the optimizer used was Adam. The training was performed on a Quadro RTX
6000 GPU.

4.2.2 RetinaNet

The model’s data distribution is explained in Sec. 4.1.2. The normalized TIFF images and the
bounding box annotations are provided as input to the RetinaNet model for training. The output
of this model is bounding box coordinates for the detected object and the corresponding label
which is the coil. We use the same data augmentation techniques and hyperparameters as
described for the Faster-RCNN model.

4.3 Blob Detection
The overall configuration of the blob detector is detailed in Sec. 3.2. Figure 3 illustrates the
schematic representation of the blob detector.

Similar to the deep learning models, the input images are used in a TIFF format. We use the
images from the independent test set as input to the blob detector. Before subjecting the images
to the blob detector, they undergo blurring to amplify variance and diminish local peaks,
enhancing subsequent thresholding. Gaussian blurring with a sigma value of 9 is applied to
achieve this. The blurred image is provided as input to the blob detector. The output is a thresh-
olded image featuring detected blob key points represented by red circles. Manual tuning of
several parameters is possible for blob detection, but for simplicity, only the blob area is utilized
as a parameter in this study. The area of the largest and smallest coils serves as the maximum and
minimum thresholds, respectively, ensuring that blobs outside these thresholds are disregarded.
Also, manual tuning makes the blob detector less robust and increases complexity. The output of
the blob detector is a set of key points represented by a circle around the detected blob. In our
evaluation process, we augment this representation by drawing a bounding box around the iden-
tified circle. This bounding box serves as the predicted region, which is subsequently compared
with the ground truth box to compute the intersection over union (IoU) for performance
assessment.

4.4 Applications
To demonstrate the applications of the proposed method, we performed experiments, which are
discussed in the following sections.

4.4.1 Experiment 1

The experiment aimed to simulate coil detection and automatic collimation around it by utilizing
bounding box coordinates as a reference. We also want to demonstrate the comparison of using
manual collimation against automatic collimation. To emulate the coil, a thin wire composed of
95% tin, 3.8% silver, and 1.2% copper was twisted and crumbled to achieve a coil-like shape.
The coil was positioned at different regions of a skull phantom for imaging purposes, including
the top and bottom of the phantom to test extreme cases.

We performed five image acquisitions with the simulated coil using different levels of
manual collimation. Subsequently, the acquired images were processed through our Faster-
RCNN coil detection algorithm to generate the bounding box coordinates. An upscaled version
of the bounding box was employed for collimation, allowing for enhanced visualization of
the coil’s surroundings. The degree of scaling was determined by an expert for experimental
purposes. The bounding box coordinates obtained from our coil detector were then used for
collimation, and a subsequent image was acquired.
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DAP values were recorded for both manual and automatic collimation for comparative
analysis. The experiment was performed on the Artis Pheno X-ray angiography system with
a detector size 30 × 40, at the lab facility in Siemens Healthineers.

4.4.2 Experiment 2

To demonstrate the adaptability of the coil detection method across different scenarios, an experi-
ment was conducted to evaluate its performance in certain uncommon situations. It includes
instances where the coils are larger or tightly collimated, where the coil dominates the surround-
ings and the system starts to optimize the exposure on passing through the coil making the sur-
roundings very bright with no visible information. We quantify the reference point air kerma and
DAP savings by computing these values with and without the system’s awareness of the coil’s
presence. Thereby demonstrating the application of the coil detection method. The experiment
involved using a skull phantom, with a coin placed on the head to simulate a coil. The imaging
process started with capturing an image of the entire skull, noting the initial reference point air
kerma and DAP values. Following this, two additional measurements were taken after closely
collimating around the coin. Since the reference point air kerma and DAP measurements are
relative, the initial values were recorded before releasing the X-rays, and the final values were
noted after the exposure. The absolute values were obtained by subtracting the final from the
initial values.

The second measurement was conducted with the system being unaware of the object in the
image, while the final measurement was made after making the system aware of the object, as
would be the case when utilizing our detection algorithm. The experiment was performed on the
Artis Icono X-ray angiography system with a detector size 30 × 40, at the lab facility in Siemens
Healthineers.

4.4.3 Experiment 3

The purpose of this experiment was to determine the average time required for manual collima-
tion. A setup similar to experiment 2 was arranged for this assessment. Five clinical experts
participated in the experiment. The coin, utilized as a reference for the coil, was imaged, and
the time taken for manual collimation-recorded from the initiation to the completion of the proc-
ess, was documented.

To introduce variability, the machine was configured to position the coin randomly within
the field of view. The experts were tasked with aligning the C-arm to the center of the coin and
subsequently collimating around it. Each expert performed three trials, and the average time
across these trials was computed for analysis. The experiment was conducted with two different
systems, Artis Icono 30 × 40 cm detector and Artis Icono 21 × 21 cm detector.

4.5 Evaluation Metrics
For the evaluation of the deep learning model, we use mean average precision (mAP) as the
metric and IOU for evaluating the blob detection model.

4.5.1 Intersection over union

IOU is a metric most commonly used in object detection, segmentation, and tracking tasks. It is
based on the overlap between ground truth and the predicted bounding box. It is the ratio of the
area of overlap and the area of union between the ground truth and prediction. It is also known as
the Jaccard index:

EQ-TARGET;temp:intralink-;e001;117;145IOU ¼ jA ∩ Bj
jA ∪ Bj ¼

jIj
jUj : (1)

In Eq. (1), A and B refer to the ground truth and predicted bounding boxes, respectively.
The IOU value ranges between 0 and 1. If there is no overlap, then the IOU is 0 and if there is
complete overlap, IOU is 1.44,45
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4.5.2 Mean average precision

It is a metric generally used for the evaluation of object detection tasks. For calculating mAP, the
average precision for each class is computed, and the average over all the classes is considered.46

The formula for mAP is as follows:

EQ-TARGET;temp:intralink-;e002;114;681mAP ¼ 1

N

XN

i¼1

APi; (2)

where N refers to the total number of classes and AP refers to the average precision. The AP
calculation is based on IoU thresholds. These AP values differ for different thresholds. To
avoid the uncertainty in picking an optimal IoU threshold, we calculate the AP over different
thresholds.46 The average is taken over all classes and all the samples for the different thresholds.
The mAP values range between 0 and 1, with 0 being the least and 1 being the best mAP score.

4.5.3 Statiscal significance test

In our results, we want to perform a comparison of independent measurements/results to
determine the significant difference between them. For this calculation, we utilized the
Mann–Whitney U test47 implemented with the “mannwhitneyu” function from the Python scipy
library.48 This method provided two key outputs: the Mann–Whitney U statistic and the asso-
ciated p-value (probability value). Subsequently, we compared the obtained p-value against a
predetermined significance level of 0.05 to determine the acceptance or rejection of the null
hypothesis.

5 Results and Discussion
This segment is divided into two sections. The first section includes evaluating the deep learning
models for object detection and comparing the best deep learning model with a classical blob
detection method. The second section focuses on the results obtained from the application of the
method for automatic collimation and the resulting reference point air kerma and time reduction.

5.1 Deep Learning Model Results
First, we assess both deep learning models using the mAP@75 metric and subsequently subject
the best-performing model to further testing on independent test data.

Figure 6 illustrates the mean mAP@75 scores across all five folds of validation data, and
Table 2 represents the standard deviation for all five folds of validation data for both deep learn-
ing models. Each bar represents the mAP@75 for that particular fold’s validation data. The
mAP@75 metric, determined at a 75% IOU threshold, is essential in this study, aiming to identify

Fig. 6 Quantitative evaluation results of both deep learning models. (a) Plot presenting mean
mAP@75 obtained by Faster-RCNN model on validation data of individual folds. (b) Plot depicting
mean mAP@75 obtained by RetinaNet model on validation data of individual folds.
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coils and utilize bounding boxes as references for collimation. Since we only use an upscaled
version of the bounding box, an exact 100% overlap between ground truth and prediction is not
imperative. Therefore, we consider an IOU threshold of 75 as a suitable metric for our objectives.
We observed a notable decrease in the mAP@75 obtained by both models on fold 2 validation
data compared to other folds. This decrease is primarily attributed to the inclusion of data from
patient 2 in the fold, which contains challenging examples not present in the training data.
Example images from the fold 2 validation data are illustrated in Fig. 7. It consists of images
from a patient who underwent a craniotomy for aneurysm treatment, which is not part of the
training data. Figure 7(a) displays a prediction image generated by the Faster R-CNN model,
revealing the presence of other devices falsely identified as coils alongside correct coil predic-
tions. Figure 7(b) presents an image containing only a framing coil (first coil deployed during the
coiling process, which makes it difficult for the network to generalize on them as it is not part of
the training data. There was no prediction by the model on this image. Consequently, these
images contribute to an overall decrease in mAP@75 scores. Therefore, we also report overall
scores excluding fold 2, resulting in mAP@75 values of 0.93 for the Faster R-CNN model and
0.9 for the RetinaNet model.

To assess the difference between both models statistically, we perform the Mann–Whitney U
test as described in Sec. 4.5.3, which resulted in a Mann–Whitney U statistic of 15 and a p-value
of 0.67, indicating no statistically significant difference between them. However, the mean
mAP@75 across all folds for the RetinaNet model is 0.81 and the Faster-RCNN model is
0.84, which shows a slightly better performance of the model. Hence, we use this model for
further assessment of the independent test data. Figure 8 presents the mAP@75 scores obtained
by all the folds of the Faster-RCNN model on the independent test data.

Our results demonstrate the Faster-RCNN model’s ability to generalize well across various
image types in both the test and independent test datasets. Specifically, we achieved a mean
mAP@75 of 0.84 over all the folds on the validation data and a mean mAP@75 of 0.94 on
the independent test data using the Faster-RCNN model.

In Fig. 9, we present the qualitative outcomes of the Faster-RCNN model. It is evident
that the model demonstrates robust generalization, yielding high confidence scores across
images with varying coil sizes and quantities. Figure 9(a) highlights the model’s ability to
detect even small coils with notable confidence, regardless of the total number of coils
present. Notably, the network exhibits the capability to predict coils in improperly windowed
images with suboptimal contrast for visual perception. This is crucial because the raw
images are not necessarily perfectly windowed in live imaging. The original image properly
windowed is presented in Fig. 4(a).

Table 2 Standard deviation values of Faster-
RCNN and RetinaNet models on validation data.

Model Standard deviation

Faster-RCNN ±0.34

±0.5

±0.26

±0

±0.22

RetinaNet ±0.34

±0.48

±0.36

±0.22

±0.17
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Fig. 7 Example figures from fold 2 of the validation data. (a) A prediction image from the Faster-
RCNNmodel that has many false positive predictions. (b) Image that includes only a framing coil in
the presence of other devices.

Fig. 8 Plot presenting the mean mAP@75 obtained from the best performing model (Faster-RCNN)
on the independent test data.

Fig. 9 Faster-RCNNmodel predictions on validation and independent test data. The green bound-
ing box indicates the ground truth and the red box is the prediction of the model with the confidence
score printed in red: deep learning model prediction on an image with (a) many coils and improp-
erly windowed and (b) large and irregularly shaped coil. (c) Example image showing the false
positive detection along with the original coil.
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Figure 9(b) further emphasizes the model’s reliability, showcasing accurate predictions even
in the case of large, irregularly shaped coils. Despite these successes, certain false positive
instances are evident, as depicted in Fig. 9(c). The network misclassifies areas with other medical
devices as parts of embolization coils. This misclassification is likely due to the shared features
between these objects and coils and also the absence of such samples in training data, posing a
challenge to the network’s discrimination. The limited number of such samples in the training
data contributes to this challenge. We are confident that augmenting the training data with a more
comprehensive set of such samples would improve the network’s ability to avoid such cases.

5.2 Evaluation of Blob Detection Model
In this section, we assess the blob detection method’s results, aiming to compare its performance
with the Faster-RCNN. The evaluation employs the IoU metric instead of mAP due to the
absence of prediction scores in the blob detection model.

Table 3 presents the mean IoU and standard deviation across independent test data, exclud-
ing images without coils for both deep learning and blob detection methods. The results show
lower mean IoU scores for the blob detection method compared to the Faster-RCNN model,
indicating challenges in generalizing across various coil shapes when using blob detection.

Figure 10 illustrates a comparison of results between the Faster-RCNN model and the blob
detector on an image with a circular coil, showcasing clear detection by both methods. However,
when applied to an image with an irregularly shaped coil [Fig. 11(a)], the blob detector produces
a false positive, which is indicated by the red arrow and the green arrow indicates the coil.
However, the Faster-RCNN model accurately identifies the coil as shown in Fig. 11(c).

Figures 11(b) and 9(b) display results for a large irregular coil, revealing the blob detector’s
failure to detect it, despite setting the threshold appropriately. The Faster-RCNN model exhibits
greater robustness, with average IoU scores over twice as high as the blob detector. A possible
explanation for this disparity lies in the blob detector results, where other areas in the output
images are highlighted for the same threshold as shown in Fig. 11(a) even though we blurred

Table 3 Comparison of evaluation of the blob detection method and Faster-RCNN
method on independent test data presenting mean IoU and standard deviation.

Method No. of samples mean IoU Standard deviation

Blob detection 12 0.41 0.4

Faster-RCNN 12 0.87 0.029

Fig. 10 Comparison of the predictions provided by Faster-RCNN model compared to thresholding
followed by blob detection: (a) Blob detection result on the image with a circular coil and (b) Faster-
RCNN model prediction of the same image.
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the image before providing it as input to the algorithm to prevent local peaks. This occurs even
when the coil seems to be the darkest region, leading to false positives.

Despite the possibility of potential improvements for the blob detector, parameter tuning for
each coil type is time-consuming. Moreover, the blob detection method is constrained by its
inability to handle improperly windowed images, such as Fig. 9(a). The method’s output to such
data is just a black image with no detections, a limitation not present in the Faster-RCNN model.

5.3 Application Results
This section presents the results of the applications derived using the Faster-RCNN model and
its clinical benefits.

5.3.1 Results: experiment 1

An example radiograph captured during experiment 1 is illustrated in Fig. 12. Figure 12(a) dis-
plays a partially and manually collimated head image, serving as the input to the Faster-RCNN
detection method to identify the coil. The resulting bounding box coordinates, postscaling,

Fig. 12 Radiographs obtained using the simulated coil, with manual and auto collimation:
(a) Partially collimated image obtained using the simulated coil. This image is further used on our
object detection algorithm for detecting the coil. (b) Image acquisition was performed after colli-
mation around coil using the bounding box coordinates generated by our object detection method
(Faster-RCNN).

Fig. 11 Resulting thresholding images along with keypoints presented in red circles, after passing
the images through the blob detection algorithm: (a) Blob detection results on the image with an
irregularly shaped coil; (b) Blob detection results on an image with large and irregularly shaped coil;
and (c) Faster-RCNN model result of the same image as (a).
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serve as the reference values for subsequent collimation. The scaling in this case is performed
manually in the coil detection program by adding a scaling factor to the obtained bounding box
coordinates. However, as explained, this scaling factor is only for experimental purposes. This
process leads to the generation of the collimated image depicted in Fig. 12(b). We repeat this
experiment with different levels of manual collimation. It is repeated five times to obtain the DAP
values between manual and automatic collimation. Table 4 provides the DAP values between
manual and automatic collimation. We statistically assess the difference between the DAP values
using Mann–Whitney U test as described in Sec. 4.5.3. It resulted in a Mann–Whitney U statistic
of 25 and p-value of 0.01. The Mann–Whitney U statistic of 25 indicates that one sample’s ranks
are typically higher than the other, suggesting a difference in their distributions. Since the p-value
of 0.01 is below the significance level, we conclude that there is a significant difference in DAP
between manual and automated collimation. This validates the effectiveness of our Faster-RCNN
model in reducing DAP. Furthermore, when we used the manual collimation images on the blob
detection method, it did not yield any detected coils due to the windowing problem.

5.3.2 Results: experiment 2

Table 5 displays the recorded reference point air kerma and DAP values following the completion
of experiment 2. The initial row in Table 5 corresponds to the outcomes of the first measurement
conducted without collimation, wherein the full head was imaged without specific object focus. It
is evident that the reference point air kerma value is relatively low (27 mGy); however, the DAP
is notably high at 526.2 (μGym2). This discrepancy arises from the larger coverage area, as
depicted in Fig. 13(a), in contrast to the collimated regions illustrated in Figs. 13(b) and 13(c).

The following two measurements in the experiment reveal outcomes after collimating
around the target coil. In the initial collimated measurement, the system lacks awareness of the

Table 4 DAP measurements in (μGym2) obtained with five different col-
limation settings, (1) manual includes different levels of manual collima-
tion including some full head acquisitions and (2) automatic includes
processing the manually collimated images through Faster-RCNN to
obtain bounding box coordinates and collimating using these coordi-
nates as reference.

Experiment Manual Automatic

1 290.78 36.09

2 134.27 31.78

3 250.33 68.61

4 180.77 31.78

5 132.61 45.01

Table 5 Reference point air kerma and DAP measurements
obtained with different settings, (1) full head image acquisition,
(2) system unaware of the presence of coil, and (3) system aware
of the presence of coil depicting reduced reference point air kerma
and DAP compared to the other two settings (highlighted in bold).

Collimation dose
Reference point

air kerma in (mGy) DAP in (μGym2)

Full head 27 526.2

Coil unknown 336 166.34

Coil known 25 12.14
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coil within the image. Notably, the reference point air kerma increases to 336 mGy, a relatively
high value, while the DAP decreases to 166.34 (μGym2), which is lower than the first meas-
urement. This discrepancy arises because the AERC in the X-ray system is unaware of the
high-absorbing coil. The AERC interprets the collimated coil region as a projection of an over-
weight patient, optimizing imaging based on the coil (metal) rather than the surrounding area.
This results in an elevated tube voltage and a higher reference point air kerma value. Additionally,
the high contrast between the coil and the background makes visualizing the surroundings
challenging, as depicted in Fig. 13(b). Due to this imaging optimization, the reduction in
DAP does not align with the reduced area.

The current workaround involves a specific workflow where the user shifts the collimated
area to a nearby soft tissue region, allowing the AERC to regulate the reference point air kerma
without considering the high-absorbing coil in the image. The AERC is frozen using a process
called regulation stop, after which the physician proceeds with the procedure. However, this
solution is intricate, time-consuming, and does not guarantee optimal image quality and dose
regulation.

To address this issue, we propose using our coil detection algorithm to inform the X-ray
system about the presence of the coil. This approach enables the measurement field for reference
point air kerma regulation to ignore the coil region, regulating the reference point air kerma based
on the surrounding area. Consequently, the AERC no longer focuses on the coil, preventing an
increase in tube voltage and resulting in a reduction of both reference point air kerma and DAP.
In the third row of Table 5, the reference point air kerma decreases from 336 to 25 mGy in a
subsequent measurement where the system is made aware of the coil presence, resulting in an
absolute 311 mGy reduction in reference point air kerma. The DAP also decreases from 166.34 to
12.14 μGym2, representing a total reduction of an absolute 154.2 μGym2 reduction in DAP.
Importantly, with the AERC no longer focusing on the coil, Fig. 13(c) demonstrates clear
visualization of the surrounding regions.

5.3.3 Results: experiment 3

Table 6 outlines the outcomes from experiment 3, conducted to assess the time required by clini-
cal experts for manual collimation. It was performed with two different detector sizes 30 × 40 cm

and 21 × 21 cm. In neurosurgeries, a standard detector size of 30 × 40 cm is typically used.
However, due to limitations in availability within our laboratory, we conducted tests using two
different sizes. The mean time across all experts for manual collimation, regardless of the detec-
tor size, stands at 29.2 s. Thus the average time of 29.2 s serves as the lower limit for manual
collimation in these cases.

Fig. 13 Resulting radiographs obtained by performing measurements with different settings of
the X-ray angiography system. (a) Full head image acquisition with coil and without collimation.
Measurement performed with collimation around coil but the system is (b) unaware of the presence
of coil and (c) aware of the presence of coil. These acquisitions were performed to demonstrate
reference point air kerma reduction and better visualization.
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By incorporating automatic coil detection and subsequent collimation, the inference time is
reduced to ∼1 to 2 s. Collimating around the coil after this automated detection and localization
process takes less time than the average duration of manual collimation.

6 Conclusion
From our experiments, we have established the superiority of the deep learning-based coil detec-
tion method over the classical blob detection approach. The application experiments further high-
lighted the benefits of employing the coil detection algorithm for automatic collimation. This
resulted in a notable reduction in radiation exposure and a decrease in the collimation time.
Deploying such deep learning models in the current Fluoroscopy suites would also be possible
because the current Siemens X-ray angiography systems are equipped with GPUs for image
processing. Despite the advantages, we can still improve the method using a more extensive
dataset to make it robust against false positives and testing other object detection techniques.

We could also use our approach to understand the workflow of the coiling procedure, where
we currently know the end of it by detecting the coil. As a next step, we are working on detecting
the framing coil and the start of the coiling procedure.
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Table 6 Time taken for manual collimation by experts, over an average
of 3 trials per expert on two detector sizes 30 × 40 cm and 21 × 21 cm.

Expert Time (s) Detector size

1 47.17 30 cm × 40 cm

2 50 30 cm × 40 cm

3 16.18 21 cm × 21 cm

4 20.02 21 cm × 21 cm

5 13.08 21 cm × 21 cm
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