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ABSTRACT. Purpose: We investigated the feasibility and advantages of using non-contrast CT
calcium score (CTCS) images to assess pericoronary adipose tissue (PCAT) and its
association with major adverse cardiovascular events (MACE). PCAT features from
coronary computed tomography angiography (CCTA) have been shown to be asso-
ciated with cardiovascular risk but are potentially confounded by iodine. If PCAT in
CTCS images can be similarly analyzed, it would avoid this issue and enable its
inclusion in formal risk assessment from readily available, low-cost CTCS images.

Approach: To identify coronaries in CTCS images that have subtle visual evidence
of vessels, we registered CTCS with paired CCTA images having coronary labels.
We developed an “axial-disk” method giving regions for analyzing PCAT features in
three main coronary arteries. We analyzed hand-crafted and radiomic features using
univariate and multivariate logistic regression prediction of MACE and compared
results against those from CCTA.

Results: Registration accuracy was sufficient to enable the identification of PCAT
regions in CTCS images. Motion or beam hardening artifacts were often prevalent in
“high-contrast” CCTA but not CTCS. Mean HU and volume were increased in both
CTCS and CCTA for the MACE group. There were significant positive correlations
between some CTCS and CCTA features, suggesting that similar characteristics
were obtained. Using hand-crafted/radiomics from CTCS and CCTA, AUCs were
0.83/0.79 and 0.83/0.77, respectively, whereas Agatston gave AUC = 0.73.

Conclusions: Preliminarily, PCAT features can be assessed from three main coro-
nary arteries in non-contrast CTCS images with performance characteristics that are
at the very least comparable to CCTA.
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1 Introduction
Low-cost CTCS images provide an opportunity to assess cardiovascular health beyond the
traditional Agatston calcification score. Agatston score and other assessments of calcifications,
including our own calcium-omics approach, are predictors of major adverse cardiovascular
events (MACE).1–4 In these images, it is also possible to opportunistically assess fat depots
(e.g., epicardial and liver fat) that have been shown to be also predictors of MACE.5 Recently,
there has been a notable focus on pericoronary adipose tissue (PCAT) as assessed in coronary
computed tomography angiography (CCTA) images as a risk factor for MACE. In this report,
we opportunistically assess PCAT features from non-contrast CTCS images and use them singly
and together to determine their role in MACE prediction.

A variety of pathways have been suggested where PCAT inflammation may be involved in
local stimulation of atherosclerotic plaque formation.6,7 The “outside-in” theory implicates
inflamed adipocytes in PCAT in the production of adipocytokines which through its effects
on adventitia lead to atherosclerosis.8 Fat depots with high lipid content have lower attenuation
in CT, whereas more aqueous adipose tissues have a higher HU value than adipose tissue.9

Fat attenuation index, a metric related to CCTA mean HU values in a 3D distribution of tissue
around the coronary artery region has been linked to inflammation using biopsy samples taken
from patients undergoing cardiac surgery.10 CCTA-based radiomic profiling of coronary artery
PCAT detects perivascular structural remodeling associated with coronary artery disease (CAD)
and improves cardiovascular risk prediction.11,12

Regarding CCTA analysis of PCAT, the variable presence of iodine could be a confound,
especially regarding average HU values and the size of PCAT volume. Recent studies have
shown that the impact of iodine contrast in CCTA PCATassessment is demonstrated as increased
HU value, leading to false positive of fat inflammation detection.13 Our group investigated
dynamic PCAT enhancement in cardiac CT perfusion studies.14 The presence of iodine can
confound HU attenuation, volume, and radiomic features, all of which can further depend on
the timing of the CCTA acquisition and the presence of obstructive disease. This suggests that
there might be an advantage to using CTCS images to assess PCAT. The absence of a contrast
agent avoids these complications in CCTA images.

In this report, we analyzed PCAT features in non-contrast CTCS images and assessed their
role in MACE prediction. The use of CTCS images presents an advantage as there are excep-
tionally large cohorts of low-cost CTCS images, enabling big data analysis for machine learning.
However, CTCS images also present challenges—the lack of an iodine contrast agent to identify
the coronaries and thick slice (3-mm thick) images complicating some standard processing such
as curved planar reformatting. In this study, we created new methods for extracting PCAT fea-
tures from left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary
artery (RCA) arteries in CTCS images, extracted features, compared results with those from
CCTA images, and determined the role of CTCS PCAT on MACE prediction.

2 Methods

2.1 Data Acquisition
This study was approved as a retrospective study of de-identified images by our local institutional
review board in Mackay Memorial Hospital, Taiwan. Images have been acquired from 2013 to
2018 at Mackay Memorial Hospital, Taiwan, and shared under a data use agreement. The pop-
ulation consisted of 83 consecutive patients with suspected CAD who underwent both CTCS
(120 kVp, 30 mAs, 3-mm slice thickness) from a dual source scanner (Siemens SOMATOM) and
CCTA (100 kVp, 600 mAs, 0.75-mm slice thickness Definition Flash). CCTA and CTCS pairs
were obtained in the same imaging session with CTCS obtained 5 min prior to any contrast
injection. The exclusion criteria for the patients were (1) age < 20 years, (2) coronary artery
bypass grafting, (3) acute or old myocardial infarction, (4) complete left bundle branch block,
and (5) inadequate datasets such as poor image quality of CCTA, which may arise due to factors
such as patient motion, improper contrast enhancement, or suboptimal scanner settings. Of the
83 patients, 14 had a MACE outcome, which was defined as cardiovascular death, acute
myocardium infraction or revascularization. CTCS Agatston score was calculated using the
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conventional detection criteria (three connected voxels >130 HU) and summed to give a total
score. Population characteristics are shown in Table 1.

2.2 Image Processing and Feature Extraction from PCAT
The processing pipeline is described in Fig. 1. To analyze PCAT in paired CCTA and non-
contrast CTCS images, several image processing steps were performed. Using the CCTA images
with ready visualization of coronary arteries, two cardiology fellows specializing in cardio-
vascular imaging semi-automatically segmented and identified the centerlines of the three main
coronary arteries (LAD, LCX, and RCA), using commercial software (Intuition Client version
4.4.13.P7, TeraRecon, Inc.). Each image was initially processed by one resident, and the accu-
racy of the segmentation was subsequently verified by another person to ensure quality and
consistency. Because coronaries are poorly visible in non-contrast CTCS images, we registered
CCTA (floating image volume) to CTCS (reference image volume) to identify the coronaries. We
used the Deeds non-rigid registration method,15 a 3D registration technique that uses a minimum
spanning tree approach to find a global optimum. This method has been found to be robust to
“sliding” organs, a desirable attribute for heart registration. Prior to registration, we sampled
CCTA images to be the same size as CTCS images and windowed the HU range of both
CCTA and CTCS images (–300 HU, 300 HU) to give better contrast for the coronary artery

Table 1 Characteristics of paired CCTA and CTCS studies.

Variable Mean (count) Std (%)

Age 58.0 12.3

Gender: male 56 67

Calcium score 213.8 561.9

Diabetic 17 20

Hypertension 51 61

Satin use 33 39

Aspirin use 26 31

Fig. 1 Pipeline of PCAT analysis in CTCS images.
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regions. After registration, masks for the main coronary arteries (LAD, LCX, and RCA) were
transformed to corresponding locations in CTCS images.

We developed a novel axial-disk method for the analysis of PCAT rather than the more
conventional curved multiplanar reformatting (MPR) to avoid the potential confound from inter-
polating thick (3 mm) image slices in CTCS. We created axial-disk-masks centered on the coro-
nary artery center with two times the axial diameter of the first 40-mm segmented lumen, giving
binary axial-disk masks. For RCA, we excluded the first 10-mm segment of the artery to avoid
interference from the aortic wall. To ensure a reasonable PCAT size, the maximum diameter of
the disk is limited to 8 mm. Following noise reduction with a 3 × 3median filter, we apply the fat
HU window ½−190;−30� to identify PCAT.

PCAT features were extracted from voxels within binary masks in CCTA and CTCS
axial-disk regions. From PCAT, we extracted 22 hand-crafted and 536 radiomics library
(Pyradiomics16) features. For hand-crafted features, we focused on the HU histogram feature
of PCAT HU values (e.g., small histogram, skewness, and kurtosis of the HU value histogram)
and the PCATaxial area features (e.g., min and max area of PCAT in the axial disk). For radiomic
features, we extracted (1) shape features such as surface volume ratio and major axis length,
(2) texture features such as gray-level co-occurrence matrix, gray-level dependence matrix,
gray-level run-length matrix, and neighborhood gray-tone difference matrix, among many that
have been used in CCTA analysis.11,17,18 Texture features were calculated using PCAT voxels
with 16 bins of discretization. Radiomics were extracted at both original PCAT images and after
three-dimensional wavelet transformation. Wavelet transformation decomposes the data into
high and low-frequency components, enabling capturing discontinuities, ruptures and singular-
ities, and coarse structure of the data.

As registration quality was important to the pipeline, we evaluated registration quality
visually and quantitatively. To quantify registration results, we manually segmented coronary
arteries in CTCS images and compared results with the registered arteries from CCTA.
Distance errors were assessed by the average distance between the centers of the axial disks
in registered coronary artery masks originating from CCTA and the manually segmented ones
from CTCS.

2.3 Machine Learning and Statistical Analyses
For both CCTA and CTCS images, we determined the relative importance of various PCAT
features and made MACE predictions. We compared the same features in paired CTCS (con-
trast-free) and CCTA (with iodine contrast) using Spearman’s rho correlation. We used univariate
logistic regression to generate p-values for each hand-crafted and radiomic feature in Manhattan
plots. Bonferroni correction to reduce false positives was applied to features by dividing the
significance level of α ¼ 0.05 by the number of components that described 99.5% of the radio-
mic variation.19 We used multivariate logistic regression and five-fold cross-validation to build
MACE predictive models and compared the area under the receiver operating characteristic
curves (AUC) to assess performance on testing data. To reduce redundancy, we excluded features
with a correlation coefficient >0.7. In addition, we created a combined model using a bagging
strategy that takes the maximum probability of all three coronary arteries.

3 Results
Registration accuracy was sufficient to enable the identification of PCAT regions in CTCS
images (Fig. 2). Across patients, the average distance between the centers of the axial disks
generated in CCTA and registered to CTCS was only 1.36� 0.78 mm from those manually
marked in CTCS images. This is comparable to the size of a voxel (0.4 mm × 0.4 mm ×
3 mm voxels). As PCAT is segmented using the fat-window thresholds within relatively large
axial disks (<8-mm diameter), this uncertainty is deemed acceptable.

Streak artifacts characteristic of beam hardening and/or motion were commonly observed in
the CCTA PCAT regions (Fig. 3). Compared with these artifact-containing CCTA images, CTCS
images were homogeneous in the PCAT region. Images devoid of iodine have greatly reduced
beam hardening due to the absence of iodine in the ventricle and reduced motion artifacts due to
the absence of high-contrast moving objects.
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In Table 2, for both CTCS and CCTA, we collected territory-specific mean HU and volumes
for MACE and no-MACE patient groups. The analysis of the mean HU and volumes in the
MACE group revealed slightly higher values in CTCS/CCTA scans, with respective mean
differences of 3.19∕1.15 HU and 0.46∕0.2 cm3. It is noteworthy that these differences were
positive and comparable in both CTCS and CCTA images.

We extracted and analyzed our own hand-crafted features and library radiomic features from
PCAT in CTCS and CCTA images. CTCS PCAT features outperformed those from CCTA, with
more features deemed discriminative based on all conventional and Bonferroni-adjusted signifi-
cance levels (Figs. 4 and 6). We observed good Spearman’s rho correlation in “axial area” fea-
tures (mean rho = 0.61) between CTCS and CCTA, indicating that CTCS could achieve similar
PCAT morphology compared with CCTA (Fig. 5). Notably, there was also correlation in mean
HU and the probability of being in the most elevated HU histogram bin ½−50 HU;−30 HU�,

Fig. 3 Artifacts in CCTA PCAT greatly affect PCAT features. The upper ones are the CTCS image
and its corresponding PCAT candidate regions, whereas the lower ones are for CCTA. In zoomed
images, red dashed circles are the candidate regions before applying the fat threshold. We could
observe streaking artifacts in CCTA PCAT candidate regions, but they were non-existent in
homogeneous CTCS images without iodine in the coronaries and ventricular cavity to give beam
hardening and accentuate motion artifacts. We plotted the original phantom mono-energetic
(upper) and poly-energetic reconstruction which shows beam hardening artifacts (lower). The
zoomed phantom images are from the upper left insert (red rectangle, 110 HU), and the one with
beam hardening artifact showed similarity to CCTA zoomed PCAT regions.

Fig. 2 Segment coronary arteries in CTCS using registration results in CCTA. After registering
CCTA images to CTCS images, CCTA semi-automatic coronary artery segmentation was
deformed (shown as red contours) and copied to CTCS. We could see registered segmentations
aligned well with image evidence in CTCS. After applying the “axial-disk”method, we were able to
assess PCAT in non-contrast CTCS images.
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the bin presumably most related to PCAT inflammation. We further investigated the best 20
CCTA PCAT library radiomic features and examined their correlation with measurements from
CTCS images (Fig. 6). We found that “wavelet intensity radiomics” showed a good correlation
between CTCS and CCTA, whereas “wavelet texture radiomics” showed poorer correlation
(Fig. 7). By employing a multivariable logistic model and incorporating hand-crafted features,
we assessed the predictive capability for determining MACE (Figs. 8 and 9). Distinctly, the
CTCS AUC was better than that for CCTA, although we cannot reliably reject the null hypothesis
of no difference (p ¼ 0.57). Nevertheless, this preliminary result suggests that CTCS may be as
good or better than CCTA for this analysis. In addition, although the CTCS PCAT fat features are
quite different than coronary calcifications giving direct assessment of atherosclerosis, MACE
prediction from CTCS PCATwas comparable to that for Agatston score, suggesting good prom-
ise. Interestingly, when we combined PCAT hand-crafted and radiomic library features from
CTCS, the AUC was slightly degraded (0.83 to 0.77), but this anomaly was insignificant.

Fig. 4 MACE informative hand-crafted PCAT features from CCTA and CTCS. In three coronaries,
we extracted 22 features (three histogram statistics, four histograms, seven PCAT areas in axial
slices, and eight probability in ranges of HU values). Univariate logistic regression on MACE and
no MACE groups gave p-values. The dashed, dotted, and solid lines represent p ¼ 0.1, p ¼ 0.05,
and the Bonferroni-adjusted significance level for p ¼ 0.05 (giving p ¼ 0.025), respectively. By
raising the threshold to p ¼ 0.1, we can ensure the identification of discriminative features by
limiting the number of false negatives. CTCS (blue)/CCTA (orange) gave 9/5, 5/3, and 3/1, for
p equal to 0.1, 0.05, and 0.025, respectively. In all cases, the numbers of CTCS features deemed
discriminative exceeded those of CCTA.

Table 2 Comparison in PCAT mean HU and volume in MACE and no-MACE groups. We
observed a slightly higher mean HU value in the MACE group in both CTCS and CCTA for three
territories. A similar trend was observed as the MACE group had larger PCAT volumes.

Mean HU Volume (cm3)

MACE No MACE MACE No MACE

CTCS LAD −70.3 ± 4.3 −73.5 ± 7.5 2.9 ± 0.8 2.5 ± 0.9

LCX −67.6 ± 5.8 −74.3 ± 6.4 3.7 ± 1.3 3.2 ± 1.2

RCA −70.0 ± 4.4 −70.3 ± 6.5 1.6 ± 0.4 1.4 ± 0.5

CCTA LAD −70.0 ± 3.6 −71.6 ± 7.2 3.2 ± 0.8 3.0 ± 1.0

LCX −69.7 ± 3.2 −71.9 ± 6.6 4.1 ± 0.8 3.7 ± 1.1

RCA −71.5 ± 5.4 −71.7 ± 8.4 2.1 ± 0.6 2.0 ± 0.8
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4 Discussion and Conclusion
In this study, we investigated the feasibility of utilizing non-contrast CTCS images for PCAT
assessment. Some of the main findings follow. Registration with CCTA images enabled, for the
first time, the identification of PCAT regions from CTCS images from all three major coronary
arteries. The univariate analysis provided a number of promising features from CTCS images for
MACE prediction that actually exceeded the number in paired CCTA images. Some hand-crafted
features and radiomics library features showed a correlation between CTCS and CCTA. For the
prediction of MACE, CTCS PCAT features slightly outperformed features from CCTA, albeit not
in a significant way with our limited paired dataset. CTCS PCATanalysis exhibits comparable or
near-comparable performance to that of CCTA. Taken together, results suggest promise in PCAT
analysis from CTCS images.

Using our processing pipeline, we were able to automatically localize PCAT in three major
coronary arteries in CTCS images. Existing studies on non-contrast images have extracted PCAT
assessments using manual segmentation of the RCA artery.20,21 The registration error was small

Fig. 5 Correlation of PCAT features from CTCS and CCTA images. The orders for CTCS and
CCTA PCAT features are the same in Spearman’s rho heatmaps of three coronary arteries, the
diagonal dashed line shows the correlation of the same feature across image modalities, and
boxes stand for each feature category derived from manual clustering. The best correlations were
in the “axial area” category, showing that CTCS could catch similar PCAT morphology compared
with CCTA.

Fig. 6 CTCS PCAT radiomics performed better than CCTA. We extracted 536 radiomic features
on each coronary artery. CTCS (blue)/CCTA (orange) gave 341/256, 203/137, and 63/22, for
p equal to 0.1, 0.05, and 0.01, respectively. In all cases, the numbers of CTCS features deemed
discriminative exceeded those of CCTA, indicating that CTCS PCAT features can achieve com-
parable performance compared with CCTA ones.
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Fig. 8 Prediction of MACE from PCAT handcrafted features extracted from CTCS and CCTA
images. For CTCS, we show MACE prediction for features from individual arteries and for a com-
bined multi-instance method where we take the maximum probability of MACE from each artery for
a patient (a). In panel (b), we present a similar figure for CCTA. In panel (c), we show MACE pre-
diction for the Agatston score. The multi-instance combined model gave the best result. In terms of
best AUCs in each panel, CTCS, CCTA, and Agatston gave 0.83, 0.79, and 0.73, with no statistical
difference between them.

Fig. 7 PCAT radiomic correlation in CTCS and CCTA. We take LAD for example, panel (a) shows
left in Spearman’s rho heatmap of reported good CCTA PCAT features in CTCS and CCTA, and
panel (b) is the best 20 CCTA PCAT radiomics in our study and its correlation to CTCS. The diago-
nal dashed line shows the correlation of the same feature across image modalities and boxes
stand for each feature category. We observed shape-related radiomics in panel (a) were highly
correlated, and wavelet intensity radiomics in panel (b) were well correlated across image
modalities, showing CTCS could catch similar PCAT morphology compared with CCTA. However,
wavelet texture radiomics of CCTA PCAT were not similar to CTCS ones, which can be visually
seen in Fig. 2.

Fig. 9 Prediction of MACE from PCAT radiomic features extracted from CTCS and CCTA images.
For CTCS, we show MACE prediction for a combined multi-instance method from each artery
performed best (a). In panel (b), we present a similar figure for CCTA. In panel (c), we show
MACE prediction for the Agatston score. In terms of best AUCs in each panel, CTCS, CCTA, and
Agatston gave similar performances with no statistical difference between them.
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(∼1.4 mm), comparable to voxel sizes (Fig. 2). Registration quality was deemed sufficient
to segment PCAT. Because axial disks tended to be about 6 mm in diameter, small displace-
ments of the axial disk center would have a small effect on results. In fact, when we evaluated
PCAT RCA volumes from CTCS images using our pipeline, we found good agreement
(Dice score 0.83� 0.11, N ¼ 5) with that from manual identification of the vessel center.
As argued previously, a curved MPR PCAT analysis common for 0.75-mm-thick CCTA images
would be inappropriate for 3-mm-thick CTCS images, due to extreme oversampling of voxels
in regions of high vessel curvature. We consider the axial-disk method the most appropriate
alternative.

Regarding PCAT, there are notable differences between CTCS and CCTA, which may
favor using CTCS. In a previous report using CT cardiac perfusion imaging,14 we identified
the presence of iodine perfusion in PCAT and demonstrated changes in PCAT HUs, apparent
volumes, and radiomics due to the presence of the iodine bolus in PCAT. This could represent
a major confounding factor in CCTA images across individuals due to individual hemo-
dynamic and CCTA acquisition time. In addition, beam hardening and motion artifacts preva-
lent in CCTA images could further result in marked image artifacts that may degrade the
quality of CCTA images for PCAT evaluation (Fig. 3). The non-contrast CTCS images have
much more homogenous PCAT regions. These issues pose major advantages of CTCS over
CCTA.

Regardless of their differences, the trends observed in PCAT assessment were consistent
between CTCS and CCTA. In both CTCS and CCTA images, we observed higher mean
HU values and larger volume of PCAT are likely to associate with MACE (Fig. 4), similar
to previous reports.22,23 In addition, interesting PCAT intensity features such as mean HU
and PCAT HU range ½−50;−30� showed a good correlation between CTCS and CCTA.
Similarly, we also found a good correlation between CCTA and CTCS for MACE informative
shape elongation and mean value after three-dimensional wavelet transformation. We believe
CTCS could serve as an alternative method to study PCAT since assessments are in good
correlation.

For both CCTA and CTCS PCAT radiomic studies, we found features extracted after wavelet
transformation are more informative than ones from the original image [Fig. 7(b)]. The literature
supports the usefulness of wavelet features in CCTA, indicating a possible correlation to fibrosis
and vascularity, reflecting permanent changes in adipose tissue induced by chronic coronary
inflammation.11,24,25 Interestingly, wavelet features in non-contrasted CTCS were also predictive,
perhaps suggesting this to be a finding worthy of more investigation.

The principal limitation of this study is the limited sample size. The size was limited due to
the difficulty in registering data and identifying PCAT regions in CTCS images. Nevertheless,
this preliminary study is most promising suggesting that it will be a worthy endeavor to develop
means for automatic analysis of PCAT in CTCS images.

In conclusion, our study demonstrates that CTCS images can be used to analyze PCAT and
that PCAT assessments in CTCS might be as valuable for predicting cardiovascular risk predic-
tion as those from CCTA. Importantly, CTCS images do not suffer from the confounds found in
CCTA images due to the presence of iodine. Given the low cost and prevalence of CTCS images,
additional studies of PCAT in CTCS images are warranted. For future work, we plan to develop
a more automated pipeline to address challenges such as the reliance on human involvement,
leveraging advanced machine learning and deep learning techniques to enhance efficiency and
accuracy.

5 Clinical Perspective
PCAT attenuation, as evaluated in CT angiography, has been linked to fat inflammation, CAD,
and cardiovascular risk. Our study reveals the feasibility and advantage of assessing PCAT from
non-contrast CT calcium score (CTCS) images, with extracted features that can predict MACE.
CTCS images are not hindered by the presence of iodine and artifacts found in CT angiography
images. Results suggest that screening, low-cost CTCS images could be an alternative for the
assessment of PCAT. Future studies are required to validate the generalizability of our findings,
which hold promise for enhancing protocols in assessing cardiovascular risk.
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