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Abstract. Starting fromWeierstrass’ approximation theorem, Zernike polynomials are obtained
by a few straightforward steps involving only the recast of the aberration function as a double
sum in the polar coordinates followed by the weighted orthogonalization of a power series. The
origin of the name Fringe Zernike polynomials is also explained. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.20.2.020501]
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Zernike polynomials are used extensively in microlithography to characterize the imaging
optics and in evaluating the resulting images. Yet few lithographers have questioned how
these polynomials are obtained. Frits Zernike invented the eponymous circle polynomials
as solutions of a self-adjoint differential equation subject to circular boundary conditions.1–3

The angular parts of his solutions are simply cos mφ and sin mφ with m ≥ 0, but the
general expression for the radial part of the solution for 0 ≤ r ≤ 1 looks quite daunting at
first:
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An alternate derivation of the above formulae is described in Born and Wolf.4 To understand
fully both derivations, the reader has to be familiar with some specialized topics in mathematical
physics. It is the purpose of this letter to lessen the complexity and demonstrate that the
Zernike polynomials can be obtained using straight-forward mathematics involving three steps
described below.

Let Wðx; yÞ be an aberration function or any function that is continuous within and on the
unit circle. According to Weierstrass’ approximation theorem, Wðx; yÞ may be expressed in a
polynomial to arbitrary degree of accuracy:
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where p and q are integers.5 Anticipating the split of the polynomials into radial and
angular parts, our first step is to express xpyq in polar corrdinates. We accomplish this by
letting x ¼ r cos θ and y ¼ r sin θ and making use of Euler’s formula and the binomial
theorem
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where we have let l ¼ sþ t and combined all the exponential terms with fixed l into a single
term with coefficient Cl. We then insert the above expression into Eq. (2) and get
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where we have letm ¼ pþ q and, just like before, combined all the exponential terms with fixed
m into a single term with coefficient Clm.

Our second step is to re-arrange the terms in Eq. (3). To start, let us write down its first few
terms, say from m ¼ 0 to m ¼ 4. They are
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C00 þ rðC01eiθ þ C11e−iθÞ þ r2ðC02ei2θ þ C12 þ C22e−i2θÞ
þ r3ðC03ei3θ þ C13eiθ þ C23e−iθ þ C33e−i3θÞ
þ r4ðC04ei4θ þ C14ei2θ þ C24 þ C34e−i2θ þ C44e−i4θÞ:

These terms can be rearranged so that the following pattern can be seen:
EQ-TARGET;temp:intralink-;;116;398fC00 þ rðC01eiθ þ C11e−iθÞ þ r2ðC02ei2θ þ C22e−i2θÞ þ r3ðC03ei3θ þ C33e−i3θÞ

þ r4ðC04ei4θ þ C44e−i4θÞg þ fr2C12 þ r3ðC13eiθ þ C23e−iθÞ
þ r4ðC14ei2θ þ C34e−i2θÞg þ fr4C24g:

Continuing this process and making use of Euler’s formula, Eq. (3) can be expressed as
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Grouping all the cosine and sine terms together, we have
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In reaching the above expression, no requirement of rotational symmetry about an axis had to
be imposed.
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Our third and last step involves expressing r2k as a linear combination of orthogonal poly-
nomials satisfying the orthogonal relation over the interval [0, 1]. Once this is accomplished,
both summations over k can be expressed as linear combinations of these polynomials.
Therefore, the first thing to do is to obtain these orthogonal radial polynomials (actually the
Zernike radial polynomials) by orthogonalizing the set f1; r2; r4: : : r2k: : : g. We do this by first
letting r2 ¼ u so that the orthogonalization process becomes for the set f1; u; u2; : : : uk: : : g. We
may then associate the orthogonalization of this set with shifted Legendre polynomials PkðuÞ.
PkðuÞ’s can be obtained through the Gram-Schmidt orthogonalization process on the above set
or simply by making use of the formula6
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(See also Ref. 5, pp. 233–239. The Legendre polynomials discussed in the text are defined on the
interval ½−1;1� and the associated formula is called Rodrigues’ formula.) The first three shifted
Legendre polynomials are P0ðuÞ ¼ 1, P1ðuÞ ¼ 2u − 1, P2ðuÞ ¼ 6u2 − 6uþ 1. Therefore, we

may express 1 as P0ðuÞ, u as P1ðuÞ
2

þ P0ðuÞ
2

, u2 as P2ðuÞ
6

þ P1ðuÞ
2

þ P0ðuÞ
3

, and so on. Hence any linear
combination of powers of u can be expressed as a linear combination of PkðuÞ’s. There is only
one catch, however. We have to include the common factor rm ¼ um∕2 in Eq. (4) in the ortho-
gonalization process, so if Gm

k ðuÞ’s are the resulting polynomials, our orthogonalization relation
has to be, instead of ∫ 1

0PkðuÞ · Pk 0 ðuÞdu ¼ Const:δkk 0 ,
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The second integral in Eq. (5) suggests that the presence of the factor um∕2 may be regarded
as orthogonalizing the set f1; u; u2; : : : uk: : : g with the weight um. The formula for the poly-
nomials obtained by orthogonalizing the set f1; u; u2; : : : gwith the weight equal to um instead of
1 (which would result in shifted Legendre polynomials) is given as

EQ-TARGET;temp:intralink-;e006;116;384Gm
k ðuÞ ¼

1

k!
1

um
dk

duk
fumukðu − 1Þkg: (6)

The validity of Eq. (6) can be established as follows. First, the polynomial so generated is of
order k because the term of the highest power inside the brackets to be differentiated is umþ2k.
Second, the following integral is valid (Ref. 6, p. 324):
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Now with powers of u represented by Gm

k ðuÞ’s, Eq. (4) can be recast as
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where Cm
k and Dm

k are the new coefficients.

The Zernike polynomial is simply Zm
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sin mθ
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where Rm
k ðrÞ ¼ rmGm

k ðr2Þ is called the Zernike radial polynomial. Since the angular parts are
already orthogonal, as
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because of Eq. (5), Zm
k ðr; θÞ’s therefore satisfy the orthogonal relation over an area bounded by

the unit circle, as
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The explicit expression for the Zernike radial polynomials can now be written down immedi-
ately as
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Defining n ¼ m þ 2k brings us to Eq. (1) put forth originally by Frits Zernike.
Incidentally, using k instead of n to index the Zernike polynomials is not a bad thing. One 

advantage is that k is independent of m. The ordering sequence of the Zernike polynomials 
used by Zeiss and ASML is a modified version of the indexing scheme originated 
at the University of Arizona. We can learn the origin of this Fringe indexing scheme 
from Katherine Creath and Robert E. Parks’ article:7 “The first program for analyzing 
interferograms was written by Jim Rancourt, PhD 1974 (Fig. 11),[19]. . . Later, Loomis, 
PhD 1980, wrote a FRINGE MANUAL, and updated the program to output the 37 “FRINGE” 
Zernike polynomials,[20] and the beginning of the confusion about whose numbering 
of the polynomials one might be using.” Citation [19] in their article is: 
Optical Sciences Center, “FRINGE Software Program,” OSC Newsletter 8(12), 
29 (1974). Citation [20] refers to John S. Loomis, FRINGE User’s Manual, Optical Sciences

Fig. 1 Indexing scheme of Zernike polynomials used by Zeiss and ASML. These plots were origi-
nally generated by Marco Moers.
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Table 1 Explicit expressions of the first 36 Zernike polynomials.

Index Mathematical expression Name m (period) m þ k
n ¼ m þ 2k
(power)

1 1 Piston 0 0 0

2 r cos θ Tilt x 1 1 1

3 r sin θ Tilt y 1 1 1

4 2r 2 − 1 Focus 0 1 2

5 r 2 cos2θ Astigmatism x 2 2 2

6 r 2 sin 2θ Astigmatism y 2 2 2

7 ð3r 3 − 2r Þ cos θ Coma x 1 2 3

8 ð3r 3 − 2r Þ sin θ Coma y 1 2 3

9 6r 4 − 6r 2 þ 1 Spherical
aberration

0 2 4

10 r 3 cos 3θ Three-fold x 3 3 3

11 r 3 sin 3θ Three-fold y 3 3 3

12 ð4r 4 − 3r 2Þ cos 2θ Astigmatism x 2 3 4

13 ð4r 4 − 3r 2Þ sin 2θ Astigmatism y 2 3 4

14 ð10r 5 − 12r 3 þ 3r Þ cos θ Coma x 1 3 5

15 ð10r 5 − 12r 3 þ 3r Þ sin θ Coma y 1 3 5

16 20r 6 − 30r 4 þ 12r 2 − 1 Spherical
aberration

0 3 6

17 r 4 cos 4θ Four-fold x 4 4 4

18 r 4 sin 4θ Four-fold y 4 4 4

19 ð5r 5 − 4r 3Þ cos 3θ Three-fold x 3 4 5

20 ð5r 5 − 4r 3Þ sin 3θ Three-fold y 3 4 5

21 ð15r 6 − 20r 4 þ 6r 2Þ cos 2θ Astigmatism x 2 4 6

22 ð15r 6 − 20r 4 þ 6r 2Þ sin2θ Astigmatism y 2 4 6

23 ð35r 7 − 60r 5 þ 30r 3 − 4r Þ cos θ Coma x 1 4 7

24 ð35r 7 − 60r 5 þ 30r 3 − 4r Þ sin θ Coma y 1 4 7

25 70r 8 − 140r 6 þ 90r 4 − 20r 2 þ 1 Spherical
aberration

0 4 8

26 r 5 cos 5θ Five-fold x 5 5 5

27 r 5 sin 5θ Five-fold y 5 5 5

28 ð6r 6 − 5r 4Þ cos 4θ Four-fold x 4 5 6

29 ð6r 6 − 5r 4Þ sin 4θ Four-fold y 4 5 6

30 ð21r 7 − 30r 5 þ 10r 3Þ cos 3θ Three-fold x 3 5 7

31 ð21r 7 − 30r 5 þ 10r 3Þ sin 3θ Three-fold y 3 5 7

32 ð56r 8 − 105r 6 þ 60r 4 − 10r 2Þ cos 2θ Astigmatism x 2 5 8
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Center, University of Arizona, Tucson, AZ, November 1976. Hence we believe that it was John 
Loomis who invented this indexing scheme in conjunction with the wavefront-fitting 
program called FRINGE, originally written by Jim Rancourt. It is therefore a gross misnomer 
that the Zernike polynomials we lithographers use are often referred to as Fringe Zernike 
polynomials, as if there are various sets of such polynomials; it is the “Fringe” indexing 
scheme of the one and only set of Zernike polynomials!

The indexing scheme used by Zeiss and ASML is shown in Fig. 1. As one can see, rows are
arranged by the ascending order of mþ k. Since the power of every radial polynomial is n ¼
mþ 2k and since ðmþ 2kÞ þm ¼ 2ðmþ kÞ is fixed for every row, the rightmost entry of every
row, with m ¼ 0, has the highest power. Table 1 lists explicitly the Zernike polynomials accord-
ing to this indexing scheme.

If the pupil function is rather roughly behaved, it may be necessary to include Zernike poly-
nomials of very high orders. For numerical computations involving Zernike radial polynomials
of n ≥ 40, Janssen and Dirksen suggested an alternate form of Eq. (1) with advantages in com-
putation time, accuracy and ease of implementation.8 Based on Janssen and Dirksen’s integral
expression, Shakibaei and Paramesran found a concise recursive relation for Rm

n ðrÞ leading to a
reduction in computational complexity.9
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