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Abstract. The accurate estimation of global chlorophyll-a (Chla) concentration from the large
remote sensing data in a timely manner is crucial for supporting various applications. Moderate
resolution imaging spectroradiometer (MODIS) is one of the most widely used earth observation
data sources, which has the characteristics of global coverage, high spectral resolution, and short
revisit period. So the estimation of global Chla concentration from MODIS imagery in a fast and
accurate manner is significant. Nevertheless, the estimation of Chla concentration from MODIS
using traditional machine learning approaches is challenging due to their limited modeling
capability to capture the complex relationship between MODIS spatial–spectral observations
and the Chla concentration, and also their low computational efficiency to address large MODIS
data in a timely manner. We, therefore, explore the potential of deep convolutional neural
networks (CNNs) for Chla concentration estimation from MODIS imagery. The Ocean Color
Climate Change Initiative (OC-CCI) Chla concentration image is used as ground truth because
it is a well-recognized Chla concentration product that is produced by assimilating different
satellite data through a complex data processing steps. A total of 12 monthly OC-CCI global
Chla concentration maps and the associated MODIS images are used to investigate the CNN
approach using a cross-validation approach. The classical machine learning approach, i.e., the
supported vector regression (SVR), is used to compare with the proposed CNN approach.
Comparing with the SVR, the CNN performs better with the mean log root-mean-square error
and R2 of being 0.129 and 0.901, respectively, indicating that using the MODIS images alone,
the CNN approach can achieve results that is close to the OC-CCI Chla concentration images.
These results demonstrate that CNNs may provide Chla concentration images that are reliable,
stable and timely, and as such CNN constitutes a useful technique for operational Chla concen-
tration estimation from large MODIS data. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.034520]
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1 Introduction

Chlorophyll-a (Chla) concentration is a key indicator of the biophysical status of water bodies.
Numerous satellites programs operated by the National Aeronautics and Space Administration
(NASA), the National Oceanic and Atmospheric Administration (NOAA), and the European
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Space Agency (ESA) have global ocean monitoring capability (Table 1). Accurate and fast esti-
mation of global Chla concentration from these satellites’ images is crucial for various purposes,
such as the net primary production derivation,1,2 harmful algal blooms detection,3–6 physical and
biological interactions,7,8 and ecosystem models validation.9,10

The twin-moderate resolution imaging spectroradiometer (MODIS), terra-MODIS and aqua-
MODIS, have high temporal resolution to view the entire Earth’s surface every 1 to 2 days which
have provided big remote sensing data. The big data characteristics of satellite remote sensing
calls for an efficient Chla concentration estimation algorithm that can handle the big remote
sensing data in an efficient and effective manner. Nevertheless, the relationship between the
Chla concentration and the remote sensing observations is a very complex nonlinear function,
as a consequence, design of an end-to-end machine learning approach with strong learning
capability that can capture the complex nonlinear relationship between the Chla concentration
and the remote sensing observations is an important research issue. Support vector machine, a
classical traditional machine learning approaches, has limitations due to their relative weak mod-
eling capability compared to neural networks to handle the complexity and uncertainty in the
inverse problem and also the low computational efficiency.11 Deep learning, especially convolu-
tional neural networks (CNNs), is well known for its using both spatial and spectral information,
strong modeling capability and leveraging GPU for high computational efficiency, by greatly
outperforming the other machine learning techniques in a lot of computer vision tasks.12–16

Remote sensing scientists have seen the value of CNNs when they face the tasks of classification,
segmentation, object detection, change detection, and super resolution.17–19 However, very lim-
ited studies focus on using CNNs to solve regression problems. Although CNNs have huge
potential for addressing the problems in Chla estimation, to the best of our knowledge, there
is no study to explore the capability of CNNs for the estimation of global Chla concentration.
Therefore, this paper explores deep CNN for the estimation of global Chla concentration.
Nevertheless, deep CNN requires a lot of training samples, but the ground-truth field data are
very limited, and as such we adopt the Ocean Color Climate Change Initiative (OC-CCI) images
as ground truth.

The OC-CCI project is one of the 13 projects in the ESA CCI program that aim at addressing
a particular essential climate variable from satellite observations. The objective of this project is
to produce a long-term, multisensor time-series of satellite ocean color data, e.g., Chla concen-
tration, with specific information on errors and uncertainties.20 The OC-CCI Chla concentration
dataset is produced by combining the ocean chlorophyll 3 (OC3) algorithm, the ocean chloro-
phyll 5 (OC5) algorithm, and the OCI algorithm [ocean chlorophyll 4 (OC4) algorithm + color
index (CI) algorithm]21–23 on the merged data of SeaWiFS, MERIS, MODIS, and VIIRS.
Implemented by a sophisticated processing chain, OC-CCI intends to provide a global Chla
concentration product of the highest quality, particularly on Chla retrievals from case 2 waters
in global scale, although these may not be the latest.24 Although inevitable biases exist in the OC-
CCI products when being matched against the in situ observations, they are the most accessible
and reliable Chla concentration product.

This paper explores the use of the CNN regression method for the end-to-end estimation
of the global Chla concentration from the imagery recorded by the MODIS sensor on board

Table 1 Summary of primary ocean color satellites.

Acronym Full name Operating institution Service period

CZCS Coastal zone color scanner NASA 1978 to 1986

SeaWiFS Sea-viewing wide field-of-view sensor NASA 1997 to 2010

MERIS Medium resolution imaging spectrometer ESA 2002 to 2012

MODIS Moderate resolution imaging spectroradiometer NASA 1999 to present

VIIRS Visible and infrared imager radiometer suite NASA and NOAA 2011 to present

OLCI Ocean and land color instrument ESA 2016 to present
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the Aqua satellite. Unlike approaches that build the relationship between reflectance and Chla
concentration obtained from the SeaBASS dataset or cruise measurements,25,26 the CNN method
here derives the relationship between reflectance and Chla concentration acquired from the OC-
CCI Chla image, which can provide abundant training samples for effective training of the CNN
model. MODIS remote sensing reflectance (Rrs) images and OC-CCI monthly Chla concentra-
tion images are used as input and ground truth, respectively. Nearly 15,000,000 samples are
selected for training the patch-based CNN regression model. A total of 12 monthly global
Chla concentration images are produced by the CNN and support vector regression (SVR),
respectively. Qualitative and quantitative analyses are used for evaluation and comparison analy-
sis, and the results imply that the CNN model can be successfully used to estimate the global
Chla concentration. This effort represents an initial attempt to estimate Chla concentration
using CNN.

2 CNN

A CNN usually takes an image as input and outputs its corresponding class label. CNN archi-
tectures comprise typically several layers: convolutional layers, pooling layers, and fully con-
nected layers. A slightly different version from the classical LeNet12 architecture is shown in
Fig. 1 to explain CNN.

The convolution layer 1 takes an RGB image X and kernelsWð1Þ which consist of weights as
inputs and outputs feature maps að1Þ. The size of X is channel × height × width ¼ 3 × 28 × 28

and the size of Wð1Þ is number × channel × height × width ¼ 20 × 3 × 5 × 5 which means that
there are 20 three-dimensional (3-D) kernels. Kernels should have the same channels as the
corresponding input image. In general, there will be multiple filters and multiple feature maps
are generated and stacked to form a multilayer feature map.27,28 Each feature map is obtained by
dot product between receptive field and kernel in specific rules of scanning the input image.
The weights in the kernel will be learned by training. The process of convolutional layer 1 can
be expressed as

EQ-TARGET;temp:intralink-;e001;116;389að1Þ ¼ f½Wð1Þ � X þ Bð1Þ�; (1)

where the operation of convolution is denoted by * and fð·Þmeans the activation function. Bð1Þ is
the bias of first convolution layer with the same size as að1Þ. The height and width of feature maps
að1Þ are decided by the height and width of kernels Wð1Þ and the step size of the kernels named
stride. They will be calculated as

EQ-TARGET;temp:intralink-;e002;116;305að1Þheight ¼
Xheight −Wð1Þ

height

stride
þ 1; (2)

EQ-TARGET;temp:intralink-;e003;116;246að1Þwidth ¼
Xwidth −Wð1Þ

width

stride
þ 1: (3)

The stride ofWð1Þ is 1, so the height and width of feature maps að1Þ is 28 − 5þ 1 ¼ 24. The size
of að1Þ is channel × height × width ¼ 20 × 24 × 24, and the channel is same as the number in

Fig. 1 Structure of a CNN which is slightly different from the classical LeNet. The order of 3-D X
and a are channel × height × width. KernelsW in each convolution layer are four-dimensional and
the number before at stands for number of the 3-D kernels, so the order of the four-dimensional
kernels W is number × channel × height × width.

Yu et al.: Global chlorophyll-a concentration estimation from moderate resolution imaging. . .

Journal of Applied Remote Sensing 034520-3 Jul–Sep 2020 • Vol. 14(3)



kernelsWð1Þ. It can be explained that the 20 feature maps að1Þ could be treated as a 3-D images as
X. The activation function employs nonlinear transformation [e.g., sigmoids, tanh, rectified
linear unit (ReLU), etc.] to each element in the outputs of convolutional process.

Conventionally, each convolutional layer is followed by a pooling layer in order to reduce the
number of parameters to learn and reduce the variance of features,29–31 which can be accom-
plished by operations like maximum, average, etc. No weights need to be learned in this layer.
The process of pooling layer 1 can be expressed as

EQ-TARGET;temp:intralink-;e004;116;650að2Þ ¼ down½að1Þ�; (4)

where down½·� represents down sampling. In general, the output of a pooling layer will be
reduced by half of input, so the size of að2Þ is channel × height × width ¼ 20 × 12 × 12. The
process of convolutional layer 2 and pooling layer 2 are same as convolutional layer 1 and pool-
ing layer 1 which can be expressed as

EQ-TARGET;temp:intralink-;e005;116;569að3Þ ¼ f½Wð3Þ � að2Þ þ Bð3Þ�; (5)

EQ-TARGET;temp:intralink-;e006;116;525að4Þ ¼ down½að3Þ�: (6)

A fully connected layer takes all neurons in the input layer, no matter a convolutional layer or
fully connected layer, and connects them to each neuron in its layer. It is regularly used as the last
few layers in a CNN architecture and yields as many outputs as labels to a classifier layer. The
process of two fully connected layers can be expressed as

EQ-TARGET;temp:intralink-;e007;116;464að5Þ ¼ f½Wð5Þ · að4Þð∶Þ þ Bð5Þ�; (7)

EQ-TARGET;temp:intralink-;e008;116;420að6Þ ¼ Wð6Þ · að5Þ þ Bð6Þ: (8)

In the fully connected layer 1, the 3-D að4Þ will be flatted to a vector with the size changing
from channel × height × width ¼ 50 × 4 × 4 to ð50 × 4 × 4Þ ¼ 800. An inner product performs
between Wð5Þ and að4Þ, and the size of bð5Þ is same as að5Þ. The fully connected layer 2 is similar
but without an activation function, and the output is set as 10 neurons according to the number of
class, which is the 10 numbers of handwritten and machine-printed character recognition in
LeNet. In the last layer, a softmax function σð·Þ will be used as classifier to generate the label
Ŷ. Based on the equation above, the output of the CNN is formulated as

EQ-TARGET;temp:intralink-;e009;116;320Ŷ ¼ σfWð6Þ · f½Wð5Þ · downff½Wð3Þ � downff½Wð1Þ � X þ Bð1Þ�g þ Bð3Þ�gð∶Þ þ Bð5Þ� þ Bð6Þg:
(9)

3 Methodology

In this paper, a patch-based CNN regression method is used to estimate global Chla concen-
tration from the MODIS imagery. The patch-based regression CNN model scans through images
and crops a patch from the images at each location of the scanning. For each patch, it uses the
regression CNN to predict the Chla concentration value of the pixel at the patch center. Then the
model assembles the whole predicted values to form the global Chla concentration map. The
complete procedure is shown in Fig. 2. It consists of three parts: the preprocessing of the input
data, the training of the CNN model, and the data prediction employing the trained CNN, which
has the same procedure as testing. Performance of the CNN method is evaluated on the whole
dataset.

3.1 Data

In order to train and evaluate the CNN model in the task of the Chla concentration estimation,
Aqua MODIS level 3 monthly standard mapped image Rrs and OC-CCI monthly Chla concen-
tration in version 3.1 are used as input and ground truth, respectively. Monthly data of January
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2016 will be used for training and validating, and monthly data of the whole year (include
January) will be used for testing. Details are shown in Table 2. Usually, there is only a training
and testing data set for inverse problem. Due to the fact that CNNs own large parameters, it is a
common practice to use a validation data set to help tune the parameters. The derived CNN

Fig. 2 Flowchart of the proposed algorithm.

Table 2 Details of the dataset used for training, validating, and testing.

Set Input Ground truth

Training January 2016 MODIS Rrs 443, 488, 547, and 667 January 2016 OC-CCI

Validation January 2016 MODIS Rrs 443, 488, 547, and 667 January 2016 OC-CCI

Testing January 2016 MODIS Rrs 443, 488, 547, and 667 January 2016 OC-CCI

February 2016 MODIS Rrs 443, 488, 547, and 667 February 2016 OC-CCI

March 2016 MODIS Rrs 443, 488, 547, and 667 March 2016 OC-CCI

April 2016 MODIS Rrs 443, 488, 547, and 667 April 2016 OC-CCI

May 2016 MODIS Rrs 443, 488, 547, and 667 May 2016 OC-CCI

June 2016 MODIS Rrs 443, 488, 547, and 667 June 2016 OC-CCI

July 2016 MODIS Rrs 443, 488, 547, and 667 July 2016 OC-CCI

August 2016 MODIS Rrs 443, 488, 547, and 667 August 2016 OC-CCI

September 2016 MODIS Rrs 443, 488, 547, and 667 September 2016 OC-CCI

October 2016 MODIS Rrs 443, 488, 547, and 667 October 2016 OC-CCI

November 2016 MODIS Rrs 443, 488, 547, and 667 November 2016 OC-CCI

December 2016 MODIS Rrs 443, 488, 547, and 667 December 2016 OC-CCI
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model is validated after some iterations by calculating the cost function on the validation data
using the current model. The CNN with the smallest validation error will be selected as the
trained CNN.

The Rrs products are obtained from the NASA ocean color website.32 These data have a
monthly temporal resolution and 4 km (at the equator) spatial resolution with global coverage
in equirectangular projection. The atmospheric correction algorithm employed by NASA has been
illustrated in detail in the previous studies.33–35 We download Rrs images at 443, 488, 547, and
667 nm of each month in 2016. These wavelengths are selected because they are the main input
data for the OC3 and the CI algorithms that have been used in the OC-CCI processing chain. In
total, 48 images, with 4 images for each month, are used with the same image size, 4320 × 8640.

On the other hand, 12 images from the year 2016, with one image for each month, derived
from the OC-CCI Chla concentration product, are used as ground truth. All Chla images have
the same spatial resolution, the coverage, the map projection, and the size as the Rrs images
described above, and as such they can be readily used for establishing the relationship between
MODIS images and the OC-CCI Chla concentration estimation. In addition, according to the
OC-CCI processing chain, all the possible ocean color satellites should be used. For the Chla
concentration product in 2016, MODIS and VIIRS are the only available data to merge due to
the service period. Further information about the Chla data can be found in Ref. 36.

3.2 Preprocessing

The ground-truth OC-CCI Chla images are logarithmically transformed due to the heavy-tailed
distribution of Chla.37–40 The four input MODIS Rrs images associated with a ground-truth
image are scaled to achieve the same range as the log-transformed Chla (Table 3). Comparing
with the normalization operation,41–43 the logarithmic transformation proves in this study to be
more effective way to improve the performance of a CNN. Pixels that had been flagged for land,
clouds, failure in atmospheric correction, stray light, etc., are assigned the value of NAN to be
excluded from your training the algorithm.

An image patch of 15 × 15 ð60 km × 60 kmÞ pixels scans the whole Rrs images to generate
samples used in this study. Because the Chla image has the same size with the Rrs images, it is
convenient to obtain the corresponding Chla concentration located at the patch center. If an
image patch contains pixels of NAN value or lies outside the boundary, it will be abandoned.
A total of 18,566,240 sample pairs are created, each of which consists of a 3-D matrix of input
4 × 15 × 15 image patch and a float scale value of the output label. Validation is crucial to train
a strong CNN model, and nearly 3,000,000 samples are selected for validation and the rest
15,000,000 samples are for training. Moreover, the preprocessing procedure is the same during
testing.

3.3 Structure of the Patch-Based Regression CNN

The structure of the patch-based regression CNN is demonstrated in Fig. 3. The main difference
from Fig. 1 is the last layer which is specifically designed by outputting only one value to solve

Table 3 Details of five images before and after preprocessing.

Before preprocessing After preprocessing

Max Min Mean Mid Max Min Mean Mid

Rrs 443 0.0658 −0.00096 0.0079 0.0078 6.5752 0 0.78917 0.7762

Rrs 488 0.0738 0.000104 0.006 0.0062 7.384 0.0104 0.59786 0.6154

Rrs 547 0.0635 0.000802 0.0022 0.0019 6.3532 0.0802 0.22099 0.1878

Rrs 667 0.0342 −0.003 0.000225 0.000168 3.4212 0 0.02247 0.0168

Chla 96.3701 0.0012 0.2367 0.1353 1.9839 −2.9345 −0.8374 −0.8687
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regression problem. The CNN consists of two convolutional layers, two pooling layers and two
fully connected layers. Strategy of how to tune the parameters to get the structure of the CNN
will be explained in Sec. 5.

The input X is image patch with the size of 4 × 15 × 15. The output of the convolution layer 1
is 3-D feature map að1Þ with the size of 20 × 13 × 13, which is a result of the convolution of input
patch with the kernel Wð1Þ with stride 1. A max-pooling layer is followed to reduce the size to
20 × 6 × 6, and the maximum operation is chosen in the pooling layer owing to its simplicity
and effectiveness. Another convolution of kernel Wð2Þ with stride 1, following a max-pooling of
process on að2Þ, yielding feature map að3Þ with the size of 50 × 4 × 4 and að4Þ with the size of
50 × 2 × 2. The first fully connected layer takes input of dimension ð50 × 2 × 2Þ ¼ 200 and
outputs 100 neurons. Unlike employing activation function sigmoids in the classical LeNet, the
activation function ReLU, maxf0; zg, is used in each convolutional layer and the first fully con-
nected layer because it helps accelerate convergence in training.44 Different with the classifica-
tion problem that the output number of the last fully connected layer is the number of the class,
to address the regression here, the last fully connected layer takes as input the 100 neurons and
yields one neuron which corresponds to the Chla concentration value.

3.4 Training and Testing

After modeling a CNN network, a loss function needs to be defined which will be minimized by
training. In place of using softmax loss, which is regularly adopted in classification CNNs, the
Euclidean loss is adopted for this regression CNN to minimize the error between the CNN output
and the ground-truth Chla concentration provided by the OC-CCI Chla image. The loss function
is equal to

EQ-TARGET;temp:intralink-;e010;116;295LðW;BÞ ¼ 1

2N

XN
n¼1

ðYn − ŶnÞ2; (10)

where W represents the weights in kernels, B means bias, N is the number of samples used in

each mini-batch which is a small subset of training samples,45 Ŷ is the output of the CNN with

the parameters, and Y is the ground-truth Chla concentration from OC-CCI Chla image. Ŷ is
calculated as

EQ-TARGET;temp:intralink-;e011;116;193Ŷ ¼Wð6Þ · f½Wð5Þ · downff½Wð3Þ � downff½Wð1Þ �XþBð1Þ�g þBð3Þ�gð∶Þ þBð5Þ� þBð6Þ; (11)

which is similar with Eq. (9) in Sec. 2 but without the softmax layer. After the loss function
defined, the CNN is trained to minimize the cost using stochastic gradient descent (SGD) opti-
mization algorithm.46,47 The update rule of weights W in SGD is given as

EQ-TARGET;temp:intralink-;e012;116;124Wiþ1 ¼ Wi þ ΔWiþ1; (12)

EQ-TARGET;temp:intralink-;e013;116;81ΔWiþ1 ¼ αΔWi − ε

�
∂L
∂W

þ λWi

�
; (13)

Fig. 3 Structure of the patch-based regression CNN. The order of 3-D X and a are channel ×
height × width. Kernels W in each convolution layer are four-dimensional and the number before
at stands for number of the 3-D kernels, so the order of the four-dimensional kernelsW is number
× channel × height × width. The red Tn is the residual error in the n’th layer during backpropa-
gation which has the same size as the corresponding a.
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where Wiþ1 and ΔWiþ1 are weights and weight update at iteration iþ 1, the learning rate ε
decides how much to learn in each step, the momentum α is motivated by physical perspective
for optimization problem to accelerate converge rates, and the weight decay λ helps to avoid
overfitting.

In Fig. 3, Tn is the residual error in the n’th layer, which has the same size as the corre-
sponding a. ∂L

∂W will be calculated in each layer from back to head. The ∂L
∂W in fully connected

layer 2 will be computed as

EQ-TARGET;temp:intralink-;e014;116;650

∂L
∂Wð6Þ ¼ Tð6Þ · að5ÞT ; (14)

EQ-TARGET;temp:intralink-;e015;116;595Tð6Þ ¼ Y − Ŷ: (15)

The ∂L
∂W in fully connected layer 1 will be computed as

EQ-TARGET;temp:intralink-;e016;116;570

∂L
∂Wð5Þ ¼ Tð5Þ · að4ÞT ; (16)

EQ-TARGET;temp:intralink-;e017;116;516Tð5Þ ¼ f 0½Wð6ÞT · Tð6Þ�; (17)

where f 0ð·Þ represents the inverse function of ReLU. No weights and bias need to be trained in
pooling layers and the ∂L

∂W in convolutional layer 2 will be computed as

EQ-TARGET;temp:intralink-;e018;116;478

∂L
∂Wð3Þ ¼ Tð3Þ ⊗ að2ÞT ; (18)

EQ-TARGET;temp:intralink-;e019;116;424Tð3Þ ¼ f 0fup½Tð4Þ�g; (19)

EQ-TARGET;temp:intralink-;e020;116;401Tð4Þ ¼ Wð5ÞT · Tð5Þ; (20)

where ⊗ represents the reverse convolution operation and upð·Þ represents upsampling.
The ∂L

∂W in convolutional layer 1 will be computed as

EQ-TARGET;temp:intralink-;e021;116;363

∂L
∂Wð1Þ ¼ Tð1Þ ⊗ XT; (21)

EQ-TARGET;temp:intralink-;e022;116;309Tð1Þ ¼ f 0fup½Tð2Þ�g: (22)

EQ-TARGET;temp:intralink-;e023;116;286Tð2Þ ¼ Wð3ÞT ⊗ Tð3Þ: (23)

The update rule of bias B is same as weights W and the ∂L
∂B in each layer will be computed as

EQ-TARGET;temp:intralink-;e024;116;260

∂L
∂Bð6Þ ¼ Tð6Þ; (24)

EQ-TARGET;temp:intralink-;e025;116;206

∂L
∂Bð5Þ ¼ Tð5Þ; (25)

EQ-TARGET;temp:intralink-;e026;116;173

∂L
∂Bð3Þ ¼ Tð3Þ; (26)

EQ-TARGET;temp:intralink-;e027;116;139

∂L
∂Bð1Þ ¼ Tð1Þ: (27)

We train the CNN for 100,000 iterations with mini-batches size of 128. During the training,
validating is carried out every 1000 iterations with exploiting 3000 forward passes each iteration
on a validating mini-batch size of 1000. All the parameters for this CNN are chosen after com-
prehensive experiments with different values, and the one with the best validating performance
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will be selected. Learning rate, momentum, and weight decay are set to be 0.0001, 0.9, and
0.0005 respectively. Once the patch-based CNN model is trained, Chla concentration will be
estimated by applying the trained model on the Rrs images pixel by pixel. Evaluation for the
testing is processed by the corresponding Chla images.

3.5 Comparison with SVR

For the purpose of comparison, an SVR is adopted to estimate the Chla concentration using the
same data source as the CNN method. The SVR solves complex regression problems by cal-
culating the linear regression function in a higher-dimensional feature space where the input data
are converted by a nonlinear function. The SVR is implemented using the fitcsvm in MATLAB.
Grid search method is used to tune the soft margin parameter and the Gaussian kernel parameter
to maximize performance, and the two tuned parameters are 1 and 2 finally. Unlike the patch-
based CNN method, the Chla concentration is performed in a pixel-based manner. Since SVR in
MATLAB cannot handle large training data, only 50,000 representative samples are adopted for
training.

3.6 Numerically Assessment of the Method

To numerically assess the agreement between the Chla concentration values achieved by the
CNN model and the ground-truth OC-CCI Chla concentration values, a set of statistical indices
are used, which include the coefficient of determination [R2; Eq. (28)], the root-mean-square
error [RMSE, Eq. (29)], the mean bias [Eq. (30)], the mean absolute percentage error
[MAPE, Eq. (31)], and the mean absolute error [MAE; Eq. (32)].

EQ-TARGET;temp:intralink-;e028;116;445R2 ¼
�P½ðChlaCNNi

− ChlaCNNÞ × ðChlaOC-CCIi − ChlaOC-CCIÞ�
N × σChlaCNN × σChlaOC-CCI

�2

; (28)

EQ-TARGET;temp:intralink-;e029;116;385RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðChlaCNN − ChlaOC−CCIÞ2

N

r
; (29)

EQ-TARGET;temp:intralink-;e030;116;349bias ¼
PðChlaCNN − ChlaOC-CCIÞ

N
; (30)

EQ-TARGET;temp:intralink-;e031;116;316MAPE ¼
X�

ChlaCNN − ChlaOC-CCI
ChlaOC-CCI

�
100

N
; (31)

EQ-TARGET;temp:intralink-;e032;116;280MAE ¼
P jChlaCNN − ChlaOC-CCIj

N
; (32)

where ChlaCNN denotes the Chla concentration values estimated by the CNN model and
ChlaOC-CCI denotes the ground-truth OC-CCI Chla concentration values. Therefore, R2 is a mea-
surement of the correlation between the predicted and the ground-truth data sets, and RMSE is
used as a measurement of absolute error.48 The pixels with NAN values in the CNN prediction
map or the OC-CCI Chla ground-truth map are not used for calculating the above-described
measures. Moreover, because the natural distribution of Chla is lognormal, the evaluation is
in log 10 space.43,49,50

4 Results

Using the patch-based CNN method, 12 monthly global Chla concentration images are pre-
dicted, and the prediction of each image takes about 2 h. A one-month Chla concentration map
estimated from the Rrs images by the CNN model and the SVR model, as well as the corre-
sponding OC-CCI ground-truth image are shown in Fig. 3. For both SVR and the CNN pre-
dictions, values below 0.001 or above 100 mgm−3 (representing <0.001% of the Chla estimates)
are removed to limit the product as same as the OC-CCI ground-truth image. From Figs. 4(a) and
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4(b), we can see that the prediction map achieved by the CNN model has a strong spatial con-
sistency with the OC-CCI ground-truth Chla concentration map, which is achieved by assimi-
lating various sources of information, such as the proximity to land, the depth of the ocean, and
ocean currents.51 Figure 6(a) shows the scatter plots of the predicted values achieved by the CNN

Fig. 4 Spatial distribution of the monthly global Chla concentration in March 2016 (a) obtained
using the CNN method, (b) the OC-CCI data, and (c) obtained using the SVR method. In general,
Figs. 4(a) and 4(c) have strong spatial consistency with Fig. 4(b). But in the three red rectangle
areas, Fig. 4(c) is much deeper red than Fig. 4(a), which means that heavier overestimation
happened in the prediction map achieved by the SVR method than the CNN model.
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model and ground-truth OC-CCI Chla concentration values. In a scatter plot, good performance
means that points are close to the equal-value line. Figure 6(a) shows that the majority of data
points distribute around the equal-value line, indicating that the CNN method owns the capacity
to predict very accurately the Chla concentration information in OC-CCI data, by learning the
complex relationship between the Rrs spectra data and the OC-CCI data.

In Table 4, we can see that the R2 achieved by the CNN model is between 0.879 and 0.918
with the mean of 0.901, indicating a high consistency between the Chla concentration values
predicted by the CNN model and the ground-truth OC-CCI values. The other numerical

Table 4 Statistical results for 12-month Chla concentration estimated by the CNN model.

Month R2 RMSE Bias MAPE MAE

1 0.915 0.123 0.008 23.519 0.117

2 0.884 0.148 −0.018 24.997 0.124

3 0.893 0.121 −0.004 21.454 0.153

4 0.914 0.116 0.007 20.020 0.102

5 0.918 0.126 −0.005 18.946 0.151

6 0.912 0.128 0.013 20.669 0.118

7 0.902 0.128 0.038 26.480 0.117

8 0.899 0.134 0.050 26.362 0.123

9 0.883 0.146 −0.032 23.757 0.127

10 0.918 0.114 0.049 25.243 0.112

11 0.895 0.124 0.035 25.966 0.141

12 0.879 0.145 0.054 26.687 0.119

Mean 0.901 0.129 0.016 23.675 0.125

Fig. 5 Zoomed in regions of the corresponding red rectangle areas in Fig. 4. (a) CNN, (b), OC-
CCI, and (c) SVR.

Yu et al.: Global chlorophyll-a concentration estimation from moderate resolution imaging. . .

Journal of Applied Remote Sensing 034520-11 Jul–Sep 2020 • Vol. 14(3)



measures also indicate small error and high accuracy of the proposed CNN model, i.e., the over-
all RMSE of the estimated Chla concentration is 0.129, and the max bias and MAPE are 0.054
and 26.687, respectively. The max and min of MAE are 0.153 and 0.102, respectively, and the
mean value is 0.125. Wewant to highlight the fact that although the proposed CNNmodel is only
trained on the month 1 data, it achieves stably good performance on the other 11 months’ data,
indicating a strong generalization capability of the CNN model.

Figure 7 shows the RMSE and R2 performance comparison between the CNN model and the
SVR method on 12 months Chla concentration estimation. We can see that the R2 curve achieved
by the CNN model is above the curve of the SVR method, indicating that CNN can outperform
SVR over all the 12-month predictions. Moreover, the RMSE achieved by CNN are also con-
sistently lower than SVR. The mean RMSE and R2 of the 12 months are (0.129, 0.901) and
(0.175, 0.828) for CNN and SVR, respectively. Figures 4(c) and 5 shows that the color of some
case 2 water areas are much deeper red than Figs. 4(a) and 5, i.e., Yellow Sea and East China Sea
(red rectangle 1), English Channel and the south of North Sea (red rectangle 2), and the east of
Bering Sea (red rectangle 3), which means that heavier overestimation happened in the predic-
tion map achieved by the SVR method than the CNN model. Figure 6 supports the visual analy-
sis above, i.e., although both the CNN model and the SVR method overestimate in the high Chla
concentration areas, the SVR method performs much worse. From Fig. 6, we can also see that
the CNN model outperforms the SVR method in the low Chla concentration areas.

Fig. 6 The scatter plot between (a) the Chla concentration values estimated by the CNN model
and the ground-truth OC-CCI Chla concentration values. (b) The values achieved by the SVR
method and the OC-CCI values. The SVR approach tends to overestimate when the Chla con-
centration is high, which is consistent with Figs. 4 and 5 that the SVR results have higher values
than the ground truth in high Chla concentration areas.

Fig. 7 The performance measures comparison of CNN and SVR for 12 months Chla concentra-
tion estimation based on RMSE and R2.
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5 Discussion

Based on the above experimental results, we can summarize that the CNN approach can better
learn the complex relationship between the Rrs and the OC-CCI Chla values than SVR, dem-
onstrating the possibility that the CNN may be used for building an end-to-end approach for
efficient Chla concentration estimation. Song et al.52 proposed a novel inversion method for
rough surface parameters using CNN, which microwave images of rough surfaces are used for
training. In Ref. 53, a CNN-based method is employed to establish the solar flare forecasting
model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar
active regions. Line-of-sight magnetograms of active regions observed by SOHO/MDI and
SDO/HMI, and the corresponding soft x-ray solar flares observed by GOES generate the dataset
for training. Previously CNN has been used for rough surface parameters and solar flare inver-
sion. Here we demonstrate that it can also be used for Chla concentration inversion by learning
the complex nonlinear relationship between the Rrs and the OC-CCI Chla values.

CNNs have a large number of hyperparameters and in this paper the patch size, kernel size,
number of kernel, neuron number in the fully connected layer, number of layers, and parameters
for training need to tune to obtain good performance for estimating global Chla concentration.
Adopting grid search method to obtain the best combination of hyperparameters is very time-
consuming. In this experiment, the hyperparameters are tuned in the flowing strategy. Structure
of a CNN mentioned in Fig. 1 is the classical LeNet, and the default hyperparameters in this
experiment are based on the parameters in Fig. 1. Number of layers will first to be changed
manually from Fig. 1 to generate a few experiment groups with different depths. Then other
hyperparameters in each group will be tuned to get the best performance CNN model which
owns the structure described in Fig. 2.

In this paper, only January 2016 data are used for training and the whole-year 12-month data
for testing. Still, CNN works very well, therefore CNN has strong robustness and generalization
capability, indicating that it may be used for predicting long-term Chla concentration without the
need to fine tune using the new observations. The mean R2 of CNN is 0.901, which is very close
to OC-CCI Chla concentration, suggesting that using MODIS data only, the CNN approach can
approximate the OC-CCI products, which is probably due to the high learning capability of the
CNN that can fully take advantage of the information in MODIS by exploiting the complex
nonlinear relationship between the Rrs and the OC-CCI Chla values. In addition, the OC-
CCI Chla concentration dataset is adopted as the ground truth because it is well-recognized
Chla concentration product that is produced by assimilating different satellite data through a
complex data processing steps. The GPU Nvidia Quadro M2000 is used in this study, with the
GPU memory of 4 GB, NVIDIA CUDA cores of 768, and boost clock of 1180 MHz. A more
powerful GPU like Nvidia GeForce GTX 1080 Ti with the GPU memory of 11 GB, NVIDIA
CUDA cores of 3584, and boost clock of 1582 MHz will help deal with big data. With better
GPU, more GPUs, and batch processing during the prediction stage, we can further shorten the
processing time.

Although the mean RMSE and R2 of CNN are acceptable, overestimation of CNN can be
found from Figs. 4(a), 5, and 6(a) in the high Chla concentration areas, which may be caused by
the imbalance quantities of the case 1 and the case 2 waters training samples. During sample
selection, we scan the whole global Chla image to train the CNN model, resulting in the case 1
samples are much more than case 2 samples. More comprehensive studies, like combining sea
surface temperature and digital bathymetry model data as input, are required to in the next stage
to solve the overestimation problem. Although OC-CCI is the most accessible and reliable Chla
concentration product, uncertainties may exist that will affect the performance of model. In the
future, if more reliable data appear, further studies will be conducted to train and evaluate the
CNN model.

6 Conclusion

In this study, a CNN method was applied to MODIS Rrs images to estimate global Chla con-
centration. The CNN took the patches of four MODIS Rrs images as input and generated the
Chla concentration directly. The OC-CCI Chla concentration image was used as ground-truth for
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training. A total of 12 monthly global Chla concentration images were produced and the gen-
eration of each image takes about 2 h. Qualitative and quantitative analyses were used for evalu-
ation and comparison analysis, and the results implied that the CNN constitutes an accurate, fast,
and robust method for the estimation of the global Chla concentration. Considering the big data
characteristic of remotely sensed global Chla data, these characteristics of the CNN model is of
great importance.

7 Appendix

All experiments are conducted on a 64 bits Intel Xeon E5-2640 v3 workstation with 2.6 GHz of
clock and 32 GB of RAM memory. A GPU Nvidia Quadro M2000 with 4 GB memory and
version 8.0 CUDA. Caffe,54 a popular deep learning framework especially for CNN which
is short for convolutional architecture for fast feature embedding, under Ubuntu 14.04 LTS
is used in this paper. Caffe provides a convenient way to implement the CNN models by defining
the architecture of CNN such as the number of layers, the type of layer and the strategy for
optimization. The preprocessing of the data and the numerically assessment are performed under
MATLAB R2014a. The data type of CNN in Caffe for reading image patches and their corre-
sponding Chla values is of the HDF5 format instead of the default Lightning Memory-Mapped
Database format to achieve easily storage of multichannel images and float labels.
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