
Magnitude-based pulse width estimation
via efficient edge detection

Kenneth Ranney ,* Kwok Tom, Dannielle Tadas, Neal Tesny,
Andre Magill, and William Diehl

DEVCOM U.S. Army Research Laboratory, Adelphi, Maryland, United States

Abstract. In recent years, researchers have addressed the problem of using noncoherent
approaches to estimate pulse width and pulse repetition interval. Since the measured transmitter
is noncooperative, and noncoherent integration gain can be realized, the input signal-to-noise
ratio (SNR) for these estimators becomes critical. We examine multiple edge detectors that
exploit moving sums calculated as part of a Haar filtering of the received signal magnitudes.
Two different ratio tests are considered in addition to the Haar filtering (or “difference of
boxes”) approach, and a binary hypothesis test is designed based on a “smallest of” constant
false alarm rate formulation. Probability arguments are then invoked to derive readily evaluated
expressions for the detection thresholds. Tests are conducted, indicating that performance of
the ratio-based approaches is comparable in terms of processed peak-to-background ratio.
However, comparisons of root mean-squared (RMS) error indicate that the difference-based
(Haar) approach produces lower error than both ratio-based approaches. The Haar filter
approach is further demonstrated to remain effective (100% detection, 0% false alarm, RMS
estimation errors of <3%) at low SNRs of ∼0 dB. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.16.016509]
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1 Introduction

Recent research has produced a variety of techniques to characterize measured radar pulses by
separating them into subsets—each potentially transmitted by a different radar system. The first
steps in this process include a pulse width (PW) estimator, and many effective component sys-
tems have been proposed.1–8 Unfortunately, these approaches often maximize performance at the
expense of operational efficiency, where we refer to an implementation as “efficient” if (1) it
attempts to minimize the number of required arithmetic operations, and (2) it prioritizes addition
over multiplication and multiplication over division. This designation arises due to the relative
ease of implementing addition operations as part of a hardware design. One approach of par-
ticular interest is based on a variant of Haar wavelet filtering and can be efficiently implemented
using moving average windows.1,2 To improve performance, however, the algorithm first proc-
esses the signal in the frequency domain before calculating the Haar filter output in the time
domain. Hence, this approach accepts additional latency in the output data sequence to achieve
a higher fidelity signal. Other PWestimation strategies that leverage averaging (integration) and/
or thresholding techniques of some sort have also been reported.3–6 These approaches frequently
detect candidate pulse edges and then determine whether these detections represent leading
edges, trailing edges, or samples that fall within a pulse. Some require two thresholds—a higher
threshold to indicate a transition from noise to pulse, and a lower threshold to indicate a transition
from pulse to noise. If two thresholds are not employed, then a clustering algorithm can group
(cluster) closely spaced detections to form a final PW estimate from individual samples that
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exceed the detection threshold. The output of the PW estimator then serves as input to a pulse
repetition interval (PRI) estimator and further downstream processing.

One particularly appealing implementation leverages the Haar filter (or “difference of
boxes”) to increase the accuracy of edge detection estimates without the need for additional
frequency domain preprocessing.7,8 Such an approach lends itself to an extremely efficient
implementation in which the output of each sum is updated with one addition and one subtrac-
tion. It also represents a natural extension of edge detection concepts commonly found in image
processing.9,10 Another appealing implementation can be derived by considering the statistical
techniques used to detect edges in synthetic aperture radar imagery.11 These approaches mirror,
to some extent, the classic constant false alarm rate (CFAR) approaches that act as statistical
anomaly detectors,12,13 operating on ratio statistics rather than differences. Ultimately, however,
the problem can be framed in terms of a binary hypothesis test,14 where H0 represents the
hypothesis that no edge is present.

While many authors present effective implementations of the proposed algorithms, some do
not take full advantage of the special form of convolution with a rectangular window (i.e., the
moving sum).1,2 The normalization at each step (to determine the average in some implemen-
tations) also introduces an expensive division, and the calculation of the square root introduces
additional computational overhead. Finally, the mean and standard deviations of both the
Rayleigh and exponential distributions include a single, common parameter; hence, a threshold
defined by T ¼ μþ k1σ (for mean μ, standard deviation σ, and scale factor k1) can also be
expressed as T ¼ k2μ (for a different scale factor k2). This property is overlooked in currently
documented approaches; even when a Rayleigh distribution assumption is incorporated.7

In what follows, we consider three different test statistics based on variants of the Haar filter
paradigm, all designed to minimize latency by reducing computational complexity. The pro-
posed moving sum filter designs reduce the number of operations required by (1) omitting divi-
sions (normalization) that involve constants whose reciprocals can be precalculated and
(2) efficiently updating the leading and lagging sums. Here, we view the two halves of the
Haar filter as separate moving sums. In addition, the filter inputs, themselves, comprise squared
magnitudes, eliminating square root calculations. Since the inputs to the pulse estimators are in-
phase and quadrature (I/Q) outputs from the (coherent) receiver, calculating the complex mag-
nitude requires both squaring the I/Q samples and taking the square root of their sum.

The use of squared magnitudes also engenders convenient relationships between the input
and output probability density functions (pdfs) under certain (reasonable) assumptions (i.e.,
exponentially distributed between-pulse samples). These pdf relationships are particularly
appealing when the ratio of the leading and lagging sums (rather than their difference) constitutes
the test statistic. Although the ratio calculation replaces the difference operation with a division
operation, we still consider this formulation for the sake of completeness. We also document
certain properties regarding threshold determination that are unique to the ratio approaches. The
major contributions of this paper are (1) development of ratio test statistics and probability-based
threshold calculations for both the Haar filter and ratio methods and (2) quantification of per-
formance for the Haar filter and ratio methods.

This paper is organized as follows: Section 2 begins the discussion with definitions of the test
statistics for all methods—the difference- and ratio-based approaches. Plots of Haar filter and
ratio-based test statistics qualitatively illustrate the performance of the two methods. Section 2
then proceeds with a description of the underlying pdf assumptions, noting how these assump-
tions influence the calculation of detection thresholds for each method. In particular, various
techniques are considered for calculating the detection thresholds based on assumptions about
the probability distribution of between-pulse data samples. Section 2 concludes with the intro-
duction of a modified version of the ratio statistic. Both a detailed examination of the threshold
calculation procedures and a qualitative comparison with the difference-based approach are pre-
sented. A block diagram of the entire system (with Haar filtering) is shown in Fig. 1.

Section 3 includes a description of two additional procedures required as part of the PW
estimation process along with some issues related to the determination of their key parameters.
These procedures comprise a local maximum (local max) detector and an edge associator, and
together they represent important components of the PW estimation system. The local max
detector retains only the largest sample within a specified radius of the sample under test
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(SUT), and the edge associator assigns a detected leading (rising) edge to each detected trailing
(falling) edge. Section 4 documents experiments conducted using signal-generation hardware
at the DEVCOM Army Research Laboratory, quantifying the effectiveness of all three methods
as well as the similarities between their performances. Finally, Sec. 5 summarizes all results,
highlighting the most significant issues.

We emphasize here that we did not consider coherent additional techniques based on time-
frequency analysis (e.g., Refs. 15–17), since they were beyond the scope of this research.

2 Pulse Detection and PW Estimation Using the Haar Filter or Moving
Sum Ratio

The Haar filter pulse detection and PW estimation procedure begin with the convolution of the
signal magnitude and the Haar wavelet, as shown in blocks 1, 1b, and 2 of Fig. 1. This operation
is also defined by

EQ-TARGET;temp:intralink-;e001;116;317

ŷout;HaarðnÞ ¼
XnþN∕2

i¼nþ1

kxðiÞk2 −
Xn

i¼n−N∕2þ1

kxðiÞk2

¼ ŷout;Haarðn − 1Þ þ kxðnþ N∕2Þk2 − 2kxðnÞk2 þ kxðn − N∕2Þk2
yout;Haar ¼ 2∕Nŷout;HaarðnÞ; (1)

where xðnÞ denotes the input (complex), baseband data sequence, N represents the Haar filter
length, and kxðnÞk denotes the complex magnitude of xðnÞ. We note that the output sample lags
the input sample by N∕2 samples, and the new output at time n can be determined from the
current output at time (n − 1) in three steps. First, the input sample at time nþ N∕2 is added
to the current output. Next, the input sample from time n is subtracted twice from the current
output. This operation converts the sample farthest from the leading edge of the positive portion
of the Haar summation into the sample closest to the leading edge of the negative portion of the
Haar summation. That is, the sample moves from the positive box of the Haar filter to the neg-
ative box of the Haar filter. Finally, the input sample at time n − N∕2 is added to the current
output. This removes the sample farthest from leading of the negative box of the Haar filter,
yielding the new contribution for that portion of the Haar filter. To simplify subsequent analyses,
we have included the scale factor that converts the sum to an average. In a general implemen-
tation, however, this scale factor would not be required.

Fig. 1 Block diagram of the PW and PRI estimation system with the Haar filter PW estimator.
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The second, less efficient PW estimator is based on a ratio test and is defined by

EQ-TARGET;temp:intralink-;e002;116;723

yout;ratioðnÞ¼
XnþN∕2

i¼nþ1

kxðiÞk2∕
Xn

i¼n−N∕2þ1

kxðiÞk2¼ snumðnÞ∕sdenðnÞ

¼ ½snumðn−1ÞþkxðnþN∕2Þk2−kxðnÞk2�∕½sdenðn−1ÞþkxðnÞk2−kxðn−N∕2Þk2�:
(2)

We immediately recognize the similarity between Eqs. (1) and (2) described in the introduc-
tion—the moving averages constituting the difference in Eq. (1) are the moving averages con-
stituting the ratio in Eq. (2). In this case, block 2 in Fig. 1 is replaced by a ratio of the moving
averages. Note that the ratio test as described in Eq. (2) represents the leading sum divided by the
trailing sum; hence, for a rectangular pulse yout;ratioðnÞwill be largest when the center of the filter
is located at the rising edge. Similarly, it will be smallest when the center of the filter is located
at the falling edge. Let yout;ratioðmÞ represents an isolated noise sample, and assume that all
I/Q noise samples contributing to the sums in Eq. (2) are independent, identically distributed
(i.i.d.) Gaussian random variables. Invoking independence and symmetry arguments for the
case where only noise samples are present, we recognize that the pdfs for yout;ratioðnÞ and
1∕yout;ratioðnÞ are the same. This implies that

EQ-TARGET;temp:intralink-;e003;116;502

Prfleading edgeg ¼ Prfyout;ratioðnÞ > Tg
¼ Prf1∕yout;ratioðnÞ < 1∕Tg
¼ Prfyout;ratioðnÞ < 1∕Tg
¼ Prftrailing edgeg (3)

and the trailing edge threshold can be determined from the leading edge threshold for a CFAR-
based approach.

Both approaches introduce a latency of N∕2 samples in the output, and the ratio requires one
division followed by a second threshold calculation. Figure 2 shows the magnitude of the input
I/Q data (i.e., the output of block 1 in Fig. 1), whereas Fig. 3 shows the difference between the
output of the Haar filter and output of the ratio for r = (rising average)/(falling average). These
output plots illustrate why a second threshold is required if a single ratio calculation is per-
formed. We determine these thresholds based on the moving averages represented by block
3 in Fig. 1. The signal-to-noise ratio (SNR) for this dataset has been set to 3 dB as part of the
dataset creation process.

2.1 Determination of Thresholds for the Haar Filter

In addition to its computational simplicity, the Haar filter approach also lends itself to an effec-
tive threshold calculation based on slightly modified, classic CFAR concepts.12,14 In particular,

Fig. 2 Squared magnitude of input, baseband data, SNR ¼ 3 dB.
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if we assume the I/Q samples between pulses are i.i.d. and normally distributed random variables
with mean zero and variance σ2, then X ¼ ðIσÞ2 þ ðQσÞ2 follows a chi-squared distribution with
two degrees of freedom18 with pdf

EQ-TARGET;temp:intralink-;sec2.1;116;402fðxÞ ¼ 1

2
e−x∕2:

From this, we have that Y ¼ σ2X ¼ I2 þQ2 follows the exponential pdf

EQ-TARGET;temp:intralink-;e004a;116;347fðyÞ ¼ 1

2σ2
e−y∕2σ

2

: (4a)

The sum of N∕2 i.i.d. random variables with pdf fðyÞ follows a gammað2σ2; N∕2Þ ¼
gammaðβ; αÞ distribution with pdf19

EQ-TARGET;temp:intralink-;e004b;116;281fðxÞ ¼ ðx∕βÞα−1e−x∕β
βΓðαÞ ; (4b)

where β is the scale parameter, α is the shape parameter, and Γð·Þ is the gamma function.
Note that the order of the scale and shape parameters within the expression gammaðα; βÞ has
been observed to vary from one author to the next.19,20

Hence, each Haar filter output sample can be viewed as the difference of two i.i.d. gamma
random variables with a moment generating function of the form21

EQ-TARGET;temp:intralink-;e005;116;176MdifferenceðtÞ ¼ ð1 − βtÞ−αð1þ βtÞ−α; (5)

where α ¼ N∕2 and β ¼ 2σ2. While the pdf corresponding to MdifferenceðtÞ is symmetric about
zero, it is difficult to work with; so, we proceed by deriving a threshold in terms of the mean and
standard deviation of the Haar filter output.

Based on our assumptions about the I/Q input samples, the difference of moving averages
that constitutes the Haar filter output is just the difference of two i.i.d. gamma random variables.
Assume that both Y1 and Y2 are i.i.d. gammað2σ2; N∕2Þ random variables, and denote the
expected value (mean) of Y1 as EfY1g; then EfY1g ¼ EfY2g ¼ βα ¼ 2σ2N∕2.22 Similarly, the

Fig. 3 Scaled and translated output of Haar filter (blue) and unscaled output of ratio (red). Zoom
of the first pulse illustrates the nature of the trailing edge ratio estimate.
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variance of Y1, varfY1g ¼ varfY2g ¼ β2α ¼ ð2σ2Þ2ðN∕2Þ, and it follows that for Z ¼ Y1 − Y2,
EfZg ¼ 0 and varfZg ¼ varfY1g þ varfY2g ¼ ð2σ2Þ2N.22 Let μ̂ be the estimate of the mean of
the original (input) data sequence (μ̂ ¼ 2σ2), then the estimator, σ̂difference, becomes

EQ-TARGET;temp:intralink-;e006;116;697σ̂difference ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2σ2Þ2N∕N2

q
¼ μ̂∕

ffiffiffiffi
N

p
; (6)

where N is the length of the Haar filter, and the estimate μ̂ has been obtained in an operation
separate from the Haar filtering operation. In particular, μ̂ is determined by the moving average
calculator shown in box 3 of Fig. 1, and it constitutes the background estimate for a CFAR
implementation.

We now have the quantities necessary to formulate a classic CFAR threshold for the Haar
filter output in terms of the background mean and standard deviation, expressed as T ¼ μ� kσ.
Since the mean of the output is zero, the threshold becomes

EQ-TARGET;temp:intralink-;e007;116;574THaar ¼ �kσ̂difference; (7)

for some scale factor k. This approach has the added advantage that it requires only moving sums
of the input data, and these can be determined using a computationally efficient algorithm.
No additional calculation involving the Haar filter outputs, such as means and standard devia-
tions, is required.

To determine an acceptable estimate of the noise background, we leverage a variant of the
cell-averaging (CA) CFAR referred to as the smallest of (SO) CA CFAR, or simply SO-
CFAR.12,23 The locations of samples within the data stream used to calculate the CFAR statistics
are shown in Fig. 4, where the input sequence, kxðiÞk2, is indicated at the left of the figure. In
this CFAR configuration, two background estimates are calculated—one on either side of the
SUT—and the smallest value is retained as the final estimate. The operation in Fig. 4 can be
expressed mathematically as

EQ-TARGET;temp:intralink-;e008;116;411μ̂ ¼ min

�
1

M

X
n∈region 1

kxðnÞk2; 1
M

X
n∈region 2

kxðnÞk2
�
; (8)

where minða; bÞ is the minimum of a and b. We have selected this method in an effort to reduce
masking effects that occur when smaller-magnitude pulses appear near larger-magnitude ones.
Other authors also deal with such effects,13,24 but their approaches are too computationally
expensive for our envisioned applications. The background averages from the regions shown
in Fig. 4 can be calculated efficiently using the technique described by Eq. (1), with the M
samples from each background estimator replacing the N∕2 samples from each half of the
Haar filter. This formulation allows for additional flexibility in determining the background
regions; however, samples constituting each half of the Haar filter represent a logical choice
for the two background regions (i.e., setting G ¼ 0).

Examples of the scaled background estimate (i.e., threshold) obtained using the SO-CFAR
and the similarly scaled background estimate using the CA-CFAR are superimposed on the

Fig. 4 Illustration of the CFAR architecture. The background estimate for the SUT becomes
minðA1; A2Þ, where Ai ¼ 1

M

P
n∈region i kxðnÞk2 is the average from region i , i ¼ 1, 2 and

minða; bÞ is the minimum of a and b.
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magnitude of the Haar filter output in Fig. 5. The problem of potential masking is apparent in the
CA-CFAR plot before each rising edge and after each falling edge.

Figure 6 shows a similar plot for the case where M ¼ N∕2 and G ¼ 0 in the SO-CFAR
formulation, and we immediately notice a large “spike” in threshold values for test samples
within the pulse. Such local maxima could be on the order lower-magnitude signals of interest,
as suggested by a comparison with between-pulse samples at the edge of the plots. This could be
particularly problematic if a flatter, global threshold is incorporated, as alluded to in our earlier

Fig. 6 Plots of threshold settings obtained using the SO-CFAR (red) and the absolute value (mag-
nitude) of the Haar output (blue) for a relatively high SNR of 4.7 dB. Potential intrapulse false
alarms are evident in the zoomed plots of the first two pulses if threshold settings remain the same
within the pulse as they are between the pulses. Setting G ¼ 0 alleviates this problem.

Fig. 5 Plots of similar threshold settings obtained using the SO-CFAR (red) and the CA-CFAR
(black dashed). The absolute value (magnitude) of the Haar output is shown in blue. Plots have
been scaled to be comparable, and CFAR parameters (guard band and background regions) are
the same in both cases. A potential for masking targets is apparent in the vicinity of the rising
and falling edge estimates. Edge effects of the calculation are visible at either end of the plot.
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proceedings paper.8 These observations support the exclusion of guard regions from the SO-
CFAR calculations.

2.2 Determination of Thresholds for the Ratio and Comparison
with the Haar Filter

A CFAR test for the ratio can be obtained in a manner similar to that for the Haar filter by
beginning with the assumption that I/Q samples constituting the numerator and denominator
summations in the ratio, denoted as Snum and Sden, are i.i.d., Nð0; σ2Þ random variables that are
processed according to Eq. (2). In this case, we can view the yout;ratioðnÞ as the ratio of two sample
variances, and it follows a Fisher–Snedecor F-distribution with parameters ðN;NÞ.25 As a result,
we can set a threshold based on the filter size and the Fisher–Snedecor pdf

EQ-TARGET;temp:intralink-;e009;116;588fðx;N;NÞ ¼ ΓðNÞxðN−2Þ∕2

Γ
�
N
2

�
Γ
�
N
2

�
ð1þ xÞN

; (9)

where ΓðzÞ ¼ ∫ ∞
0 x

z−1e−xdx is the gamma function and ΓðNÞ ¼ ðN − 1Þ! for integer N.
Examples of the F-distribution pdf are included in Fig. 7 for different filter lengths (values
of N).

We have developed a second method for performing the ratio test that also does not require an
estimate of the parameter σ2. We define a new random variable

EQ-TARGET;temp:intralink-;e010;116;473R ¼ Snum∕ðSnum þ SdenÞ (10)

and observe that it follows a betaðN∕2; N∕2Þ pdf,26 defined as

EQ-TARGET;temp:intralink-;e011;116;430bðx; α; βÞ ¼ xα−1ð1 − xÞβ−1∕Bðα; βÞ; (11)

where 0 ≤ x ≤ 1, Bðα; βÞ ¼ ðΓðαÞΓðβÞÞ∕Γðαþ βÞ, α ¼ β ¼ N∕2, and Γð·Þ is the gamma
function.

Since this distribution has the added advantage of being symmetric about ½, we can set upper
and lower thresholds, 0.5� δ, where δ is selected using bðx;N∕2; N∕2Þ based on the desired
false alarm probability. Values of R < 0.5 − δ indicate falling edges, whereas values of
R > 0.5þ δ indicate rising edges. As a result, calculation of a “reciprocal” threshold (to detect

Fig. 7 Plots of Fisher–Snedecor pdf for different values of N . Generated using built-in Matlab
F -distribution function.
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the falling edge shown in Fig. 3) is no longer necessary. Figure 8 shows a plot of the ratio R
from Eq. (9) for N∕2 ¼ 400, whereas Fig. 8 shows plots of beta pdfs for several values of
N∕2. Notional threshold values are included in Fig. 8 and superimposed on Fig. 9, as well.
For N∕2 ¼ 200 and δ ¼ 0.12, we calculate a predicted false alarm probability for R of
PrfR < 0.38g þ PrfR > 0.62g ≈ 1.13 × 10−6. Hence, we would expect to see no samples
<0.38 or >0.62 within the plot of Fig. 8, and that is, indeed, the case.

From Eq. (11), we also observe that the size of the moving average, N∕2, is the only param-
eter required to calculate the detection threshold. By contrast, the Haar filter requires the def-
inition of additional parameters. If we leverage the formulation of Eq. (7), for example, then we
must specify the scale factor, k. Such a scale factor must be determined experimentally if no
assumptions regarding the underlying between-pulse statistics are made. So, a threshold calcu-
lation for the Haar outputs similar to that for the ratio in Eq. (9) would require either the

Fig. 8 Plot of modified ratio, R, for sample data of Figure 1. PrfR < 0.38g þ
PrfR > 0.62g ≈ 1.1254 ð10−6Þ forN∕2 ¼ 200 (smaller than the window used). Initial and final sam-
ples are discarded due to edge effects.

Fig. 9 Plots of bðx ;N∕2; N∕2Þ for different values of N∕2. Generated using built-in MATLAB
beta distribution function.
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evaluation of Whittaker’s W function or a careful numerical integration.21 Calculation of
σ̂difference would also be required for both approaches [i.e., the approach based on Eq. (7) and
the approach exploiting theW function]; this estimate could leverage the existing averages used
to calculate Haar filter outputs in Eq. (1). Since σ̂difference will vary with time, multiple evaluations
of Eq. (7) or theW function may become necessary. The calculation of the threshold Tratio based
on Eq. (9) requires similar calculations to those of THaar, relying on the same moving averages of
the input data stream. However, threshold calculations for R are based exclusively on N∕2,
which remains constant and is defined a priori. We will refer to R as “beta” to distinguish
it from the ratio of Eq. (2).

3 Peak Location and Edge Association

Because both of the PWestimators considered here incorporate moving averages, the transitions
between inter- and intrapulse regions are gradual. (The plots in Figs. 3 and 8 show this behavior.)
Hence, several samples near the peak will likely pass the threshold test, creating the need for a
local maximum estimator (local max). The output of this local max, shown by block 5 in Fig. 1,
is described by

EQ-TARGET;temp:intralink-;e012;116;525fmaxðnÞ ¼
� ðnÞ if jfðnÞj ¼ max

n∈½n−w;nþw�
jfðnÞj

0 otherwise
: (12)

Here, the value of w is selected to eliminate false alarms at locations that are close to (or within)
the pulse, but not on one of its edges. This typically occurs when the leading or lagging con-
volution window includes both pulse and nonpulse samples. Note that w will typically be a
fraction of the Haar filter length (e.g., N∕2). Since this local max operation is serial, it introduces
an additional delay of w Haar filter output or ratio output samples. If a delay of N∕2 samples is
required to accumulate the input samples for the local max—the case for both the Haar filter and
the ratio—the total latency through the local max becomes N∕2þ w samples.

The second part of the operation of box 5 in Fig. 1 comprises an algorithm developed to
associate rising (leading) and falling (trailing) pulse edges to produce PW estimates. This
approach represents a generalization of an approach proposed by Smith,27 and it is intended
for eventual realization via a hardware design or a hardware/software co-design. The outline
below summarizes the process, which attempts to minimize the computations required to per-
form the association. The procedure consists of the steps in Algorithm 1.

Algorithm 1 Edge association algorithm

1. LAE = [][]; /* list of all pairs of associated edges: 2xD array if there are D detections */

2. LURE = []; /* list of unassociated rising edges */

3. startIndex = locateFirstRisingEdge(data); /* location of first rising edge. “data” are the input data
stream */

4. LURE[0] = startIndex;

5. ureCounter = 0; /* largest index of LURE that contains valid data */

6. stopCount = 1e10; /* number of data samples to be processed */

7. outputDataCounter = 0; /* index of output data samples */

8. lastEdgeFalling = 0; /* most recently encountered edge is not a falling edge */

9. for i = startIndex+1:stopCount

10. currentEdge = data(i) ; /* data are the input data stream */

Ranney et al.: Magnitude-based pulse width estimation via efficient edge detection
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The algorithm maintains a list of unassociated leading (rising) edges and a list of associated
edge pairs. When a new falling edge is encountered, it is associated with all unassociated rising
edges, and the newly associated pairs of rising and falling edges are added to the list of associated
rising and falling edges. Following a successful edge association, the most recent rising edge is
retained in the list of unassociated edges (in case the next encountered edge is a falling edge). If
the next encountered is a falling edge then the process repeats, and the most recent rising edge
remains as the only entry in the list of unassociated rising edges. However, if the edge following a
successful association is a rising edge, this rising edge replaces the already-used rising edge in
the list of unassociated rising edges. If multiple rising edges are encountered, then they are added
to the list of unassociated edges and remain in the list until a falling edge is encountered.

This edge association is performed as outputs of the local max become available, so it only
introduces latencies associated with the data transfer between lists. It does not require accumu-
lation of additional data samples.

4 Experimental Evaluation of Haar and Ratio-Based Methods

The DEVCOM Army Research Laboratory has recently obtained highly flexible signal gener-
ation and recording hardware. This hardware enables researchers to generate and record pulse
trains comprising various parameters. That is, it allows the user to record pristine transmitted
waveforms with various PWs, PRIs, and waveform modulations. For our experiments, we modi-
fied the SNR both by attenuating the signal within the hardware and by injecting noise into

Algorithm 1 (Continued).

11. currentIndex = i;

12. if currentEdge > 0 /* current edge is a rising (leading) edge */

13. if lastEdgeFalling == 1

14. ureCounter = ureCounter–1; /* no consecutive falling edges: overwrite the saved rising edge */

15. end

16. ureCounter = ureCounter+1; /* add current index to the list of unassociated rising edges*/

17. LURE[ureCounter] = currIndex; /* increment count, there is always at least on element of LURE*/

18. lastEdgeFalling = 0; /* reset flag to indicate last edge not a falling edge */

19. else if currentEdge < 0 /* current edge is a falling (trailing) edge

20. LAE[0] [outCounter:outCounter+ureCounter-1] = LURE; /* add all elements of LURE to LRE

21. /*associate all elements of LURE with currrentEdge */
LAE[1] [outCounter:outCounter+ureCounter-1] = currentEdge;

22. tmp = LURE[ureCounter-1]; /* save the most recent rising edge */

23. LURE = []; /* clear the LURE */

24. LURE[0] = tmp; /* load most recent rising edge back into LURE */

25. ureCounter = 0; /* reset the unassociated rising edge counter to initial array element */

26. outCounter = outCounter+ureCounter; /* increment the global output counter */

27. lastEdgeFalling = 1; /* set flag to indicate last edge was a falling edge */

28. else /* Do nothing. Samples = 0 did not pass detection and local max. */

29. end /* if */

30. end /* for */
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pristine data. A sample data set is shown in Fig. 2, for an SNR of ∼0 dB. Here, we have adjusted
the SNR by adding appropriately scaled, complex, i.i.d. Gaussian noise to nearly pristine, mea-
sured I/Q data samples. We have also scaled and translated the Haar filter output so that the
Haar filter and ratio plots are aligned in the plots of Fig. 2. Following alignment, the locations
of both rising and falling edges are readily apparent.

All calculations were performed using Mathworks’ MATLAB computing platform. In par-
ticular, the Haar filter and the rectangular window filters (for the ratio tests) were constructed
and outputs were generated using built-in convolution functions and vector operations. This
approach realized the desired system operation while adhering to MATLAB’s recommended
practices. It also eliminated explicit programming of loops from the software.

To compare the performance of the techniques for rising edge detection, we compared the
aligned peak values from the rising edges with the average of the between-pulse samples. Since
the ratio test produced an estimate that was asymmetric about 1, we included only interpulse
values greater than one when calculating the background average. We repeated the process for
a second data set generated by the signal generation hardware and shown in Fig. 10, where the
lower-SNR samples (at ∼ − 2.9 dB) extracted for evaluation are indicated by the dashed box.
This data set comprised the same signal at two different attenuations. The transition between
attenuation levels is evidenced by the sudden increase in SNR, making the pulses visible even
without any additional integration. The results of this analysis are summarized in Table 1, where
we have denoted the data in Fig. 2 “data set 1” and the data in Fig. 10 “data set 2.”Here, the peak-
to-background ratio (PBR) was calculated by first converting all test statistics to zero mean and
then scaling them relative to a reference peak value. Following this step, the reference peak for
the Haar and ratio test statistics had the same value. Next, leading-edge peaks were selected
and averaged, and between-pulse samples were also selected and their magnitudes averaged.
The ratio between these quantities constitutes the PBR shown in Table 1, and it provides a mea-
sure of how easily a pulse edge could be detected. A larger PBR implies that, on average, a larger
threshold may be set, thereby eliminating potential false alarms. From Table 1, we see that all of
the approaches are similarly effective pulse detectors. The performance difference between the
Haar and ratio tests is not significant (between 0.3% and 1% difference in PBR). Similarly, the
difference between the Haar and beta tests is between 1.5% and 3.7%. As noted previously,1,2,7,8

the PW estimator improves as the size of the moving averages (used to calculate the ratio and
Haar filter outputs) increases, and the best performance is achieved when the Haar filter length is
equal to twice the PW.

A second analysis was conducted to further characterize the algorithms’ PW-estimation per-
formance as a function of SNR. In this case, both the root mean-squared (RMS) and the standard
deviation of the PWestimation errors were considered. To create the requisite variations in SNR,
we leveraged another hardware-generated data set that featured multiple PRIs and the pristine
waveform samples shown in Fig. 11(d). Gaussian noise was added to the data to obtain specified
pulse-to-noise ratios (PNRs) as described by the procedure in the appendix of Ref. 11. That is,

Fig. 10 Input data set 2 from the signal generation hardware. In this scenario, the target changes
range abruptly (moves closer) in the vicinity of sample 6,000,000. We focus attention on the lower-
SNR pulses indicated by the dashed box. SNR ∼ −2.9 dB.
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I/Q noise samples were scaled so that, following addition, the ratio of the mean-squared within-
pulse values to the mean-squared between-pulse values achieved the desired ratio, defined to be
the PNR. These values could then be translated to SNR if desired. Examples of preprocessed
(spoiled) data are included in Fig. 11 for different PNR levels. Plot (c) further identifies which

Fig. 11 Pulse from data set 1 showing effects of noise injection. Noise level adjusted for
(a) PNR ¼ 3 dB, (b) PNR ¼ 6 dB, and (c) PNR ¼ 9 dB. (d) Pristine data (prior to noise injection).

Table 1 Comparison of ratio, Haar, and beta approaches for rising edge detection. All of the
peak-to-background statistics are similar, indicating similar performance for edge detection.
PW estimator accuracy is considered separately. Haar filter and beta outputs have been scaled
and translated to match the ratio outputs as in Fig. 2. SNR for data set 1 ≈ 0 dB, SNR for data set
2 ≈ −2.9 dB.

Comparison of edge detection performance

Data
used Test

Normalized
background

mean
Normalized
peak mean PBR

Delta, ratio-to-Haar
(approx.)

Delta, Haar-to-beta
(approx.)

Data
set 1

Ratio 1.0859 2.1100 1.9431 0.023/1.966
(1.1%)

0.0719/1.966
(3.7%)

Haar 1.0868 2.1368 1.9661

Beta 1.1292 2.1390 1.8942

Data
set 2

Ratio 1.0518 1.5591 1.4839 0.0044/1.4795
(0.3%)

0.0225/1.4795
(1.5%)

Haar 1.0507 1.5561 1.4795

Beta 1.0724 1.5624 1.4570

Fig. 12 RMS error and standard deviation as a function of PNR. Performance of ratio-based
approaches similar (curves coincident), while the performance of the Haar approach is superior
(lower RMS error and lower estimation variance at all values of PNR). (a) RMS errors. (b) standard
deviations.
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samples (within-pulse) were used to calculate the numerator of the PNR and which samples
(between-pulse) were used to calculate the denominator. Here, the location of pulse edges was
determined from the pristine data.

The performance of each method is summarized in the plots of Fig. 12 for multiple values of
SNR. Since the true PW was 400 samples, Fig. 12(a) shows that the RMS error for the Haar filter
method was <1% for PNR > 6 dB (SNR > 4.7 dB). However, the ratio methods achieved RMS
errors approaching 1% only for PNRs of 12 or greater. The standard deviation shows a similar
result, with the Haar filter outperforming the ratio-based methods. The plots in Fig. 13 show the
PWestimates used to calculate the statistics in Fig. 12. Here, the PNR has been fixed at 3 dB, and
large errors in the ratio-based estimates are readily apparent. Note that the local max radius [w in
Eq. (10)] was set to half of the Haar filter length [N∕2 in Eq. (1)]; hence, there are no PW
estimates <400. For these investigations, the filter length was set to 2 × PW, the optimal value.

5 Summary and Conclusions

We have described and analyzed three PWestimators, two of which exploit the ratios of moving
sums and one of which exploits the differences of moving sums. The analyses indicated that all
three approaches were similarly effective at detecting rising pulse edges. However, the Haar
filtering, difference-based approach (often referred to as a “difference of boxes”) produced the
most accurate PW estimates, performing effectively down to SNRs approaching −3 dB. Here,
the pulse detector performance was quantified via the PBR, whereas the PW estimator perfor-
mance was quantified in terms of the RMS error and the standard deviation of the PWestimates.

Relative performance of the ratio and Haar filtering approaches was first evaluated in terms of
the percentage difference between the PBRs of the various filter outputs. A higher PBR indicated
that a higher threshold value could be used to obtain the same probability of detection; hence,
if the PBR of one approach were significantly higher than that of another approach, the approach
with the higher PBR was deemed to be more effective. Here, the Haar approach served as the
reference for scaling and translating outputs to a common scale, and two different data sets were
leveraged to perform the evaluation. These metrics indicated the amount of contrast between the
average of output peaks (at the pulse leading edge locations) and the average of between-pulse
samples differed by <4% in the worst case and differed by 1.5% or less in typical cases. The
largest differences occurred at the lowest SNR levels, and the performance of the standard ratio
was closest to that of the Haar filter. Both the Haar filter and standard ratio approaches exhibited
higher PBRs than the beta ratio approach. The similarity of the PBRs confirmed qualitative

Fig. 13 PW estimates for a PNR of 3 dB; the true PW is 400 samples. Several samples exhibiting
high standard ratio or beta ratio errors do not exhibit high Haar errors. Note that the radius of the
local max was set at 400, so no PW estimates were <400.
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conclusions based on the similarities between appropriately scaled plots of outputs from the
various approaches. These statistics were quantitatively similar, indicating that all approaches
are, on average, similarly effective at detecting pulse edges.

A second experiment was performed to evaluate PW estimator performance using the RMS
error and the estimator standard deviation. Plots of PW estimates obtained at a PNR or 3 dB
(SNR of 0 dB) were also included to further illustrate the behavior of the two approaches. The
comparison demonstrated that

1. all approaches produced PW estimate errors of approximately eight samples (2% of
the true PW) or less for PNRs ≥ 6 dB (SNR > 4.7 dB),

2. the Haar filter approach continued to perform well at SNRs of ∼0 dB (RMS error < 3%

of the true PW),
3. the Haar filter approach consistently outperformed the ratio-based approaches, and
4. the performance of all approaches improved monotonically, i.e., the RMS error decreas-

ing as the PNR increased.

As part of the algorithm evaluations, we also described the statistical behavior of various
estimators under certain reasonable assumptions about the probability distributions governing
between-pulse data samples. In particular, we demonstrated an effective SO-CFAR formulation
and threshold-calculation procedure for the Haar filter approach that did not require use of the
filter outputs; only the moving sums constituting the difference were required. For the ratio-
based approaches, the threshold was determined based on the filter size alone, and the moving
sums were not needed.

Of all methods considered, the Haar filter approach was particularly appealing due to its lack
of division computations. In addition to this, the algorithm continually updated the two moving
sums that were leveraged for both the filter output and the threshold calculations; hence, the
adaptive threshold incurred no significant additional cost. For these reasons, the Haar filter
appears particularly well suited for hardware design and implementation. It shows promise when
signals of interest are powerful enough to allow for noncoherent processing.
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