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Abstract. This study describes the derivation of an expression for the relationship between red
and near-infrared reflectances, called soil isolines, as an orthogonal concept for the vegetation
isoline. An analytical representation of soil isoline would be useful for estimating soil optical
properties. Soil isolines often contain a singular point on a dark soil background. Singularities
are difficult to model using simple polynomial forms. This difficulty was circumvented in this
work by rotating the original axis and employing a vegetation index-like parasite parameter. This
approach produced a soil isoline model that could yield any desired level of accuracy based on
the use of an index-like parameter. A technique is further introduced for approximating the
removal of the parasite parameter from the relationship by truncating the higher-order terms
during the derivation steps. Numerical experiments by PROSAIL were conducted to investigate
the influence of the truncation errors on the accuracy of the approximated soil isoline equation.
The numerical results showed that truncating terms of order greater than two in both bands,
yielded negligible truncation errors. These results suggest that the derived and approximated
soil isoline equations may be useful in other applications, such as the analysis and retrieval
of soil optical properties. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083621]
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1 Introduction

Parameter retrieval algorithms based on remotely sensed land surface reflectance data often
involve band algebraic manipulations and produce environmental data records, such as vegeta-
tion biophysical parameters or soil optical properties. Some algorithms use an intermediate
proximity measure, e.g., the spectral vegetation index (VI), either explicitly or implicitly.1–5

The performances of the data records depend somewhat on the functional forms of VIs;
hence, research in this field has extensively explored the development and improvement of
functional forms over the last few decades.1,2,6–11 Numerous VI models have been developed
through these efforts.1,12–21

VI models may be categorized systematically according to the concept of the isoline used to
develop and analyze the VI.7–9,11,22–28 Limiting our discussion to VI models of the red and
near-infrared (NIR) reflectance space, two main types of isolines have been recognized: the veg-
etation index isoline (VI isoline) and the vegetation biophysical isoline (the latter is denoted as
vegetation isoline in this study).1,9,11,22,23,26,28 The VI isoline represents a set of red and NIR
reflectance spectra that produce a single VI value, meaning that the VI isoline depends only
on the VI model equation. This point is illustrated in Fig. 1(a) using the normalized difference
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VI as an example. The vegetation isoline [Fig. 1(b)], on the other hand, describes a group of
reflectance spectra that belongs to a fixed set of biophysical parameters and structural properties,
such as the leaf area index (LAI), fraction of vegetation cover (FVC), and leaf angle distribution.
The vegetation isoline can be simulated numerically using a radiative transfer model of the veg-
etation canopy.29–32 Note that these two isolines (VI isoline and vegetation isoline) have no
physical relationship, meaning that the two are obtained independently. Also, note that the ulti-
mate goal of the VI development effort may be understood as an effort to identify a VI model
equation that yields VI isolines that agree perfectly with the vegetation isolines.1,9,11,22,23,26,28

Several studies suggest that the discrepancies between the VI isoline and the vegetation isoline
indicate performance losses in the VI model as a result of internal and external sources of errors,
including the influence of soil brightness changes beneath the vegetation canopy.11,18,19,25,33–37

Formulations of the vegetation isoline have been developed in several previous
studies.1,11,22,23,26 These formulations have been used to develop VI models and analyze VI
errors.1,12–21 The isoline equations have been used directly to retrieve the LAI (Ref. 38) and
FVC (Ref. 39) from a remote sensing data set. In recent years, the isoline equation, which
describes the relationship between the red and NIR reflectances, has been used to cross-calibrate
the VI products obtained from multiple sensors.25,40–44 These activities clearly indicate that
the concept of the isoline has provided rich information and useful tools for a variety of
investigations. The concept of the isoline has significantly advanced research in this field.

(a)

(b)

(c)

Fig. 1 Illustration of the vegetation index isolines (a), vegetation biophysical isolines (b), and soil
isolines (c). The concept of the soil line is illustrated in (b), and (c) illustrates a zero vegetation
isoline.
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The concept of the isoline is not limited to biophysical properties. An alternative to the veg-
etation isoline is the soil isoline, which represents a group of reflectance spectra produced from a
constant soil surface. Note that a soil isoline is totally different from the concept of the soil line,27

which is a zero vegetation isoline. In other words, the soil line is a vegetation isoline describing
the particular case of zero vegetation, whereas the soil isoline is a set of spectra obtained under a
constant set of soil reflectance spectra, in view of various biophysical parameters. This point is
illustrated in Fig. 1(c).

Extensive efforts have been devoted toward studies of vegetation isolines; however, soil iso-
lines have not been fully investigated. The present study aims to contribute to this area of
research. Singularities at relatively dark soil surfaces present a significant barrier to modeling
soil isolines using a simple polynomial form.10 Limiting our discussion to the red–NIR reflec-
tance space, under low levels of soil reflectance, the soil isoline becomes approximately parallel
to the NIR axis. As a result, some of the polynomial coefficients become extremely large. Such
singularities must be circumvented in any soil isoline model. A numerical example of this
situation is discussed in the next section.

The concept of the soil isoline is not new. Soil isolines have been introduced and routinely
used as a conceptual tool on various occasions to explain band manipulation algorithms and their
performances in the presence of external sources of errors.1,9,45,46,46–52 The concepts have not
been fully investigated, however, nor have they been developed analytically to date. Formal
derivations of soil isoline estimation algorithms and the accuracy of such approaches
when applied to truncated higher-order terms must be explored in anticipation of soil isoline
applications. This study attempts to address these needs.

Three objectives have guided this study. First, we introduce a formal derivation of soil isoline
equations that give an arbitrary level of accuracy. Second, we describe a technique for approxi-
mating the analytical representation. This approximation is more amenable to applications than
the analytical expression. Finally, we characterize the accuracy of the approximated form of the
soil isoline equations. A set of numerical experiments were carried out using a canopy radiative
transfer model to estimate the model accuracy. This work is an extension of our previous studies,
described elsewhere.47,48

2 Difficulty in Modeling Soil Isolines Using Polynomial Fitting
Approaches

The difficulties associated with modeling soil isolines are briefly mentioned above. Here, we
describe an illustrative numerical example of a soil isoline modeled using a second-order
polynomial. In this model, the soil isoline is expressed in terms of the relationship between
the red (ρr) and NIR (ρn) reflectances according to

ρn ≈ k0ðRsÞ þ k1ðRsÞρr þ k2ðRsÞρ2r ; (1)

where k0, k1, and k2 represent the polynomial coefficients.
A reflectance spectrum (ρr, ρn) may be numerically simulated using the radiative transfer

model PROSAIL.31 During the simulation, only two parameters are varied: LAI and the soil
reflectance of the red band Rs. Because we assumed a soil line, the soil reflectance of the
NIR band was uniquely determined based on the soil line equation from the red reflectance
Rs. For this reason, we did not explicitly introduce the NIR reflectance of the soil surface
in this study. An isoline was numerically simulated by setting the soil reflectance Rs to a
fixed value, meaning that the LAI was the only variable parameter used to optimize each
soil isoline in this example. After simulating each soil isoline (under a constant value of
Rs), a set of three coefficients (k0, k1, and k2) was obtained through polynomial fitting
approaches. These steps were repeated for various values of Rs to obtain the coefficients ki
as a function of Rs. Figure 2 shows a plot of the coefficients ki as a function of Rs. As
shown in the figure, the coefficient k2 assumed an extremely high value at low values of
Rs, which prevented the development of accurate polynomial models. These difficulties
arose from the fact that some soil isolines in dark soils are almost parallel to the NIR axis.
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The reflectance axis may be rotated through an angle to circumvent these difficulties.
The next section provides a stepwise derivation of the soil isoline equation that avoids these
difficulties.

3 Parametric Representation of the Soil Isoline Equation

3.1 Assumptions and Transformation

The derivation begins with the assumption of a linear soil line represented by

Rsn ¼ s1Rsr þ s0; (2)

where s1 and s0 are the slope and offset, respectively.
In our derivation of the soil isoline equation, the original reflectance subspace was shifted and

rotated through a certain angle to avoid the singularity shown in Fig. 2. The original coordinate
was shifted to set the intersection between the Y axis and the soil line to be the origin of the
transformed subspace. The rotation angle was identical to the slope of the soil line (θ in radians).
The transformation may be expressed as

ρ 0 ¼ Tð−θÞðρ − μÞ; (3)

where T represents a rotation matrix, ρ and ρ 0 are the reflectance spectra before and after the
transformation, respectively, in the red and NIR reflectance space.

ρ ¼ ðρr; ρnÞt; (4)

ρ 0 ¼ ðρ 0
r; ρ 0

nÞt: (5)

The vector μ shifts the X axis by an amount equal to the soil line offset.

μ ¼ ð0; s0Þt: (6)

Because the axis is rotated through an angle between the soil line and the X axis, θ is defined
by the soil line slope s1 as

Fig. 2 Variations of the polynomial coefficients k0, k1, and k2 used to approximate soil isolines in
the red and near-infrared (NIR) reflectance space. Each soil isoline was simulated for a fixed
soil reflectance Rs. The coefficients were then obtained numerically from a polynomial fit of
the simulated soil isolines. The coefficients as a function of Rs are plotted in the figure. Note
that the coefficients k2 approached extremely high values, indicating the presence of a singularity
at low values of Rs.

Taniguchi, Obata, and Yoshioka: Derivation and approximation of soil isoline equations. . .

Journal of Applied Remote Sensing 083621-4 Vol. 8, 2014



θ ¼ tan−1ðs1Þð−π∕2 < θ < π∕2Þ: (7)

Finally, the relationships between the reflectances before and after the transformation become

ρ 0
r ¼ cosðθÞρr þ sinðθÞðρn − s0Þ; (8)

and

ρ 0
n ¼ − sinðθÞρr þ cosðθÞðρn − s0Þ: (9)

The NIR reflectance in the transformed reflectance space, Eq. (9), plays an important role in
this study. The NIR reflectance assumes a form similar to that of a VI known as the weighted
difference vegetation index (WDVI).14 This result may be understood by rearranging Eq. (9) to
give

ρ 0
n ¼ cosðθÞðρn − s1ρr − s0Þ: (10)

This model and the WDVI model are distinguished by the factor cosðθÞ and the offset −s0.
Because both the factor and the offset are constant values, the functional behavior of ρ 0

n is essen-
tially identical to that of WDVI (V), which is defined as

V ¼ ρn − s1ρr: (11)

This study used ρ 0
n as a parasite parameter during the derivation of the soil isoline equation.

The parasite parameter yielded behavior indistinguishable from that of WDVI, and the soil iso-
line equation was expected to be strongly correlated with biophysical parameters, such as LAI.
The validity of the choice of this parameter may be understood intuitively by recalling that
a major source of variation in the soil isoline is the biophysical parameters. (A soil isoline is
obtained under conditions of a fixed soil profile.)

3.2 Polynomial Model in the New Reflectance Space

Our next step of the derivation involved modeling the relationship between ρ 0
r and ρ 0

n (Fig. 3).
A simple polynomial representation was used for this purpose. ρ 0

r was modeled using a power
series of ρ 0

n.

ρ 0
r ¼

Xmp

i¼0

piðRsÞρ 0i
n þOðρ 0mpþ1

n Þ; (12)

Fig. 3 Illustration of the soil isolines obtained after applying a space transformation to fit the
original red axis to the soil line. The x and y axis were identified with ρ 0

n and ρ 0
r , respectively.

Upper lines correspond to soil isolines at brighter soil.
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wheremp and pi represent the order of the polynomial and the coefficients of the i’th-order term.
Rs indicates the soil reflectance. This relationship may be approximated to an arbitrary order of
accuracy by selecting a polynomial based on an orthogonal set of functions, such as the
Chebyshev polynomials. Therefore, this part of the modeling process did not deteriorate the
accuracy of the model. The first term on the right-hand side of Eq. (12) is defined as the function
fmp

ðRs; ρ 0
nÞ and will be discussed further later in this study.

fmp
ðRs; ρ 0

nÞ ¼
Xmp

i¼0

piðRsÞρ 0i
n : (13)

We were interested in examining the variations in pi as a function of the soil reflectance Rs.
The parameter pi varied smoothly over a small range of values, unlike the polynomial fit results
obtained from the original reflectance space, as described in Fig. 2. The coefficients pi were
obtained numerically by assuming a second-order polynomial.

ρ 0
r ≈ p0ðRsÞ þ p1ðRsÞρ 0

n þ p2ðRsÞρ 02
n : (14)

Figure 4 shows the polynomial coefficients pi. The figure indicates that the coefficients did
not feature singularities such as those described in Fig. 2. Unlike the fitting results obtained on
the original space (Fig. 2), all coefficients varied smoothly as a function of Rs and remained
within a small range (Fig. 4).

3.3 Parametric Representation of a Soil Isoline

Equation (12) represents a soil isoline in the transformed reflectance space. A parametric rep-
resentation of the soil isoline in the original reflectance space was obtained simply by inverting
the transformation

ρ ¼ TðθÞρ 0 þ μ: (15)

Prior to solving this relationship, ρ 0
r was replaced with the derived soil isoline equation.

ρ 0 ¼
�
fmp

ðRs; ρ 0
nÞ þO

�
ρ
0mpþ1
n

�
; ρ 0

n

�
t
; (16)

where fmp
ðRs; ρ 0

nÞ corresponds to a soil isoline function in a rotated reflectance space described
by a polynomial of order mp.

Fig. 4 Illustration of the coefficients p0, p1, and p2 used to approximate the soil isolines using
second-order polynomials as a function of the soil reflectance Rs. The solid lines with circles,
the dotted lines, and the solid lines indicate the coefficients p0, p1, and p2, respectively.
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Equations (15) and (16) describe a system of soil isoline equations derived using the parasite
parameter ρ 0

n.

ρr ¼ cosðθÞfmp
ðRs; ρ 0

nÞ − sinðθÞρ 0
n þ cosðθÞOðρ 0mpþ1

n Þ; (17)

ρn ¼ sinðθÞfmp
ðRs; ρ 0

nÞ þ cosðθÞρ 0
n þ s0 þ o sinðθÞOðρ 0mpþ1

n Þ: (18)

Substituting Eq. (13) into the above equations yields the following form:

ρr ¼
Xmp

i¼0

aiðRsÞρ 0i
n þ cosðθÞOðρ 0mpþ1

n Þ; (19)

ρn ¼
Xmp

i¼0

biðRsÞρ 0i
n þ sinðθÞOðρ 0mpþ1

n Þ; (20)

where aiðRsÞ and biðRsÞ are the coefficients defined as follows, using the Kronecker delta func-
tion δ:

aiðRsÞ ¼ cosðθÞpiðRsÞ − sinðθÞδ1i; (21)

biðRsÞ ¼ sinðθÞpiðRsÞ þ cosðθÞδ1i þ s0δ0i: (22)

3.4 Symbolic Form of the Soil Isoline Equation Without ρ 0
n

The index-like parasite parameter ρ 0
n could be removed symbolically by solving one of the above

equations for ρ 0
n. We first defined two functions before proceeding with our derivation.

grðρ 0
nÞ ¼

Xmp

i¼0

aiðRsÞρ 0i
n þ cosðθÞOðρ 0mpþ1

n Þ; (23)

gnðρ 0
nÞ ¼

Xmp

i¼0

biðRsÞρ 0i
n þ sinðθÞOðρ 0mpþ1

n Þ: (24)

Using these functions, a reflectance spectrum may be expressed as

ρ ¼ ½grðρ 0
nÞ; gnðρ 0

nÞ�t: (25)

After solving Eq. (23) for ρ 0
n symbolically,

ρ 0
n ¼ g−1r ðρrÞ; (26)

the soil isoline equation without the parameter ρ 0
n becomes

ρn ¼ gn½g−1r ðρrÞ�; (27)

or, reciprocally,

ρr ¼ gr½g−1n ðρnÞ�: (28)

Although we have described the derivation steps symbolically, the inversion process expressed
in Eq. (23) [or Eq. (24)] is not practical when applied to higher-order terms. Practical applications
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of the representation require the truncation of certain higher-order terms in Eqs. (23) and (24). The
consequences of the truncation order must be evaluated in view of the desired accuracy for an
approximated soil isoline equation. The truncation orders in Eqs. (23) and (24) may be asymmetric;
that is, the truncation order may be selected such that Eq. (23) provides a first-order approximation,
whereas Eq. (24) provides a third-order approximation. For the sake of practicality, this point will
be discussed further in the following sections.

4 Approximations of the Soil Isoline Equation

This section introduces several soil isoline equations approximated using the higher-order trun-
cated terms expressed in Eqs. (19) and (20). Although the polynomial orders in the red and NIR
reflectances are indicated by a single integer mp, they are not necessarily identical (the orders
may be asymmetric). Because the value of mp may be independently selected in either band, mr

and mn will be used to refer to the red and NIR reflectances, respectively. In the new notation,
these equations become

ρr ¼
Xmr

i¼0

aiðRsÞρ 0i
n þ cosðθÞOðρ 0mrþ1

n Þ; (29)

and

ρn ¼
Xmn

i¼0

biðRsÞρ 0i
n þ sinðθÞOðρ 0mnþ1

n Þ: (30)

The soil isoline equation may be approximated by selecting the integers for mr and mn.
Higher values of mr and mn will increase the accuracy of an approximated soil isoline. The
drawback to choosing highly accurate approximations is that solving these equations for ρ 0

n

may be difficult. Such difficulties can prevent the development of a useful analytical formulation
of the soil isoline. In the following subsections, we introduce several approximations and
investigate the accuracy of the approximated soil isoline equations from a practical point of
view. Each case is constructed through a combination of mr and mn.

4.1 Case 1 (mr, mn) = (1,1): First-Order Approximation of
the Soil Isoline Equation

The first case involves implementing a first-order approximation for both reflectances. Here, mr

and mn were set to unity. In this case, Eqs. (29) and (30) were truncated at and beyond
the second-order term.

ρr ¼ a0 þ a1ρ 0
n; (31)

ρn ¼ b0 þ b1ρ 0
n: (32)

In the above equations, the coefficients ai and bi depended solely on the soil reflectance Rs

(and were independent of the biophysical parameters). We explicitly avoided using the parameter
Rs during the derivation, for brevity. Equation (31) was solved for ρ 0

n to give

ρ 0
n ¼ −

a0
a1

þ 1

a1
ρr: (33)

Combining Eqs. (32) and (33) yielded the first-order approximated soil isoline equation.

ρn ¼
�
b0 −

a0
a1

b1

�
þ b1

a1
ρr: (34)
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4.2 Case 2 (mr, mn) = (1, N): Asymmetric First-Order-in-Red Approximation

The second case involves implementing asymmetric truncation orders: mr and mn. In this case,
a first-order approximation was applied to the red reflectance, and N’th-order terms were
retained in the NIR reflectance. The corresponding system of equations could be expressed as

ρr ¼ a0 þ a1ρ 0
n; (35)

and

ρn ¼
XN
i¼0

biρ 0i
n : (36)

Equation (35) was solved for ρ 0
n and substituted into Eq. (36) to give the soil isoline equation.

ρn ¼
XN
i¼0

bi
ai1

ðρr − a0Þi: (37)

Equation (37) may also be expressed as

ρn ¼
XN
i¼0

Giρ
i
r; (38)

where the coefficients Gi are defined by

Gi ¼
XN
α¼i

αCið−a0Þα−i
bα
aα1

: (39)

4.3 Case 3 (mr, mn) = (N,1): Asymmetric First-Order-in-NIR Approximation

This case involves the same orders of approximation as case 2, except that the bands assigned to
the first and N’th-order approximations were reversed. The red reflectance was approximated by
a higher-order polynomial (mr ¼ N). The final results were obtained by considering the recip-
rocal notation.

ρr ¼
XN
i¼0

Hiρ
i
n; (40)

where Hi represents a coefficient of the i’th-order term of the NIR reflectance, defined by

Hi ¼
XN
α¼i

αCið−b0Þα−i
aα
bα1

: (41)

4.4 Case 4 (mr, mn) = (2, 2): Second-Order Approximation

We proceeded one step further to derive a different form of soil isoline equations that included
higher-order terms (at most second-order terms in both reflectances). This case was represented
by ðmr;mnÞ ¼ ð2; 2Þ. The system of equations became

ρr ¼ a0 þ a1ρ 0
n þ a2ρ 02

n ; (42)
and

ρn ¼ b0 þ b1ρ 0
n þ b2ρ 02

n : (43)

In this study, we solved Eq. (42) for the index-like parameter ρ 0
n to yield

ρ 0
n ¼

−a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − 4a2ða0 − ρrÞ

p
2a2

: (44)

Note that Eq. (43) could have been selected in place of Eq. (42).
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Our numerical investigations indicated that the negative part of the equations derived above
always provided the correct solution, that is, the signature of the equations. Therefore, in the
remainder of this study, the negative part of the equation was used in the next derivation steps.
The origin of this result has not yet been clarified, and further investigations are needed.
These investigations will be addressed in future studies. The derived expressions, based on
the signature coefficients ai and bi, listed in Table 1, were further explored.

Substituting the values of ρ 0
n in Eq. (44) into Eq. (43) yielded a second-order approximation

of the soil isoline equation.

ρn ¼ b0 −
a1b1 þ 2a0b2

2a2
þ a21

2a22
b2 þ

1

2a2

�
−b1 þ

a1
a2

b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 − 4a2ða0 − ρrÞ

q
þ 1

a2
b2ρr:

(45)

4.5 Case 5 (mr, mn) = (Nr, Nn): Higher-Order Approximation

The final case described in this study involves approximations using higher-order terms in both
reflectances. It is difficult to solve higher-order polynomials analytically. These difficulties were
avoided simply by including the higher-order terms in the zeroth-order term. The analytical form
derived in this study is only useful for symbolic manipulation; however, practical approxima-
tions may be inferred from this expression. The availability of a symbolic form enables further
analyses of problems in which soil isolines play an important role. For this reason, we proceed
with a discussion of the derivation of higher-order terms.

This derivation began with a parametric representation of the isoline equation.

ρ ¼
�XNr

i¼0

aiρ 0i
n ;

XNn

i¼0

biρ 0i
n

�t

: (46)

We next included all terms of order greater than 2 in the zeroth-order term. The red reflec-
tance could then be approximated by

ρr ¼ a 0
0 þ a1ρ 0

n; (47)

where the zeroth-order term a 0
0 is a function of ρ 0

n, and the soil reflectance Rs through ai is
defined by

a 0
0 ¼ a0 þ

XNr

i¼2

a2ρ 0i
n : (48)

The remainder of the derivation steps were similar to those introduced in Sec. 4.2. The final
form of the soil isoline equation becomes

ρn ¼
XNn

i¼0

G 0
iρ

i
r; (49)

where G 0
i is a coefficient (similar to G) that includes the index-like parasite parameter ρ 0

n in
the red reflectance, up to the i’th-order term.

Table 1 Signature of the parameters ai and bi in Eqs. (19) and (20) based on numerical
simulations.

Eq. (19) Eq. (20)

a1 a2 a3 b1 b1 b1

þ − þ þ þ∕− þ
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G 0
i ¼

XNn

α¼i
αCið−a 0

0Þα−i
bα
aα1

: (50)

Note that the value of a 0
0 in Eq. (50) included the parameter ρ 0

n (as well as the soil reflectance
Rs), meaning that G 0

i depended on both Rs and the biophysical parameter (LAI in this study).
This dependency distinguished this case from the case introduced in Sec. 4.2.

The expression of Eq. (50) could not be used for numerical investigations in this study
because a 0

0 depended on ρn itself and ρn could not be computed from Eq. (50); however,
the availability of this formulation is beneficial in certain applications where a good estimate
of ρn is available. One such application is the cross-calibration of VI. In such applications,
the value of ρn for one sensor provides a good estimate for the corresponding band of the
other sensor. More specifically, a 0

0 of one sensor can be approximated by the reflectance of
the other sensor. These applications will be investigated in future studies.

5 Simulation Results

5.1 Numerical Simulations of Soil Isolines Using the Radiative Transfer Model

We evaluated the accuracy of the analytical forms of the soil isoline equation introduced in the
previous section. The evaluations were performed using numerical simulations of the top of the
canopy (TOC) reflectance spectra (without an atmospheric layer) under various biophysical and
soil conditions. A combined leaf and canopy radiative transfer code PROSAIL (Ref. 31) was
used in this study. The TOC reflectance simulation using PROSAIL was conducted using a soil
spectrum as an input parameter. For this purpose, we used the two soil endmember reflectance
spectra provided with the code as a sample input. These spectra are the dark and bright soil
spectra plotted in Fig. 5. In the figure, the blue dotted line indicates the dark soil endmember
spectrum and the blue solid line indicates the bright soil endmember spectrum. The soil lines of
intermediate brightness were obtained by linearly blending the two endmember spectra.

The input parameters for the canopy layer were obtained from the leaf chemical contents and
the canopy biophysical and structural parameters. In this study, LAI was varied and all other
parameters were held fixed, as summarized below. The leaf structure parameter was fixed at a
value of 1.5, and the leaf properties were also fixed at levels of 40 μg∕cm2 chlorophyll,
8 μg∕cm2 carotenoid, 0.0 brown pigment, 0.01 cm leaf equivalent water, and 0.005 g∕cm2

dry matter content. The canopy structural parameters assumed a spherical leaf angle distribution
with a hot spot parameter of 0.01. The illumination and viewing conditions were assumed to be

Fig. 5 Plot of the modeled top-of-canopy reflectance spectra over the range of 650 to 900 nm,
assuming various leaf area indexes (LAIs) over the dark and bright soil. The shaded curves
indicate the band pass filters of the GOSAT-CAI bands 2 (red) and 3 (NIR).
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characterized by fixed values corresponding to a solar zenith angle (30 deg), a view zenith angle
(10 deg), or a relative azimuthal angle (0 deg) over the entire simulation. Finally, the values of
LAI were varied from 0 to 4 in intervals of 0.5.

The TOC reflectance spectra simulations obtained under the above conditions yielded a set of
reflectance spectra (Fig. 5). These spectra were convoluted into band reflectances based on the
band pass filters. The red and NIR bands were fixed using the band pass filters two and three,
respectively, of the greenhouse gasses observing satellite cloud and aerosol imager (GOSAT-
CAI). The CAI band two (red) ranged from 664 to 684 nm and band three (NIR) ranged
from 860 to 880 nm, as shown in Fig. 5.

The soil line in the red–NIR reflectance space was then determined from the simulated band
reflectances. The band reflectances were then simulated from the set of reflectance spectra, and
the simulated band reflectances were tagged according to the value of LAI and the soil red reflec-
tance Rs. The slope s1 and offset s0 of the soil line were 1.2322 and 0.0260, respectively.

Finally, the parameters for the power series of ρ 0
n were obtained from a polynomial fit after

transforming the original red–NIR reflectance subspace based on the numerically simulated soil
line. Figure 6 shows a plot of the soil isolines represented by an index-like parasite parameter ρ 0

n

[Eqs. (19) and (20)]. The results obtained using polynomials of three different orders (each band
was modeled using a polynomial of order at most three) are compared in the figure. The simu-
lated reflectance spectra (empty circles) are plotted in the figure to indicate the true soil isolines.
As shown in the figure, the soil isolines agreed well with the simulated reflectance spectra when
higher-order polynomials were used in the model (mp). Note that the distance between the soil
isoline and the simulated reflectance spectrum is considered to be an error in the derived soil
isoline equations. The figure shows that an order of three yields a very small error, indicating
the high accuracy of the soil isoline equation. The next section discusses an investigation of
the accuracy of the approximated soil isolines introduced in Sec. 4. The distance between
a reflectance spectrum and an approximated soil isoline was calculated.

5.2 Accuracies of the Approximated Soil Isoline Equations

The accuracies of the approximated soil isoline equations described in Sec. 4 depended on the
order of the polynomial used in Eqs. (29) and (30). The choice of the polynomial order in the two
equations can differ, as in the asymmetric case described in the previous section. In this section,
we assumed a polynomial order of at most three. Nine combinations of the integers mr and mn

were possible, as summarized in Table 2. The table summarizes all nine combinations of the
polynomial orders used in Eqs. (29) or (30) and the corresponding equations derived in
Sec. 4. Figure 7 shows a plot of the approximated soil isolines obtained from six cases. The

Fig. 6 Soil isolines represented by an index-like parasite parameter ρ 0
n [Eqs. (19) and (20)].

The orders of the polynomials were one, two, or three for both bands. The simulated reflectance
spectra are indicated by empty circles and provide references for the true spectra. The soil isolines
derived in this study approached the true spectra (empty circle) as the order of polynomial
increased.
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errors, measured based on the distance between the reflectance spectrum (empty circle) and
the soil isolines, differed among the cases.

Figures 8(a) to 8(i) show the errors (on the logarithmic scale) obtained for the approximated
soil isolines of the nine cases summarized in Table 2, as a function of Rs and LAI. The error
εðRs; LÞ was computed as the distance between the simulated reflectance spectrum (ρr, ρn) and
the reflectance spectrum on the soil isolines (ρ̂r, ρ̂n) for each pair of Rs and LAI values.

Table 2 References for each soil isoline equation, constructed using combinations of polynomial
orders, mr and mn .

mn

1 2 3

mr

1 Eq. (34) in Sec. 4.1 Eq. (38) in Sec. 4.2 Eq. (38) in Sec. 4.2

2 Eq. (40) in Sec. 4.3 Eq. (45) in Sec. 4.4 Eqs. (29) and (30) in Sec. 4

3 Eq. (40) in Sec. 4.3 Eqs. (29) and (30) in Sec. 4 Eqs. (29) and (30) in Sec. 4

(a)

(b)

(c)

Fig. 7 Reflectance spectra and approximated soil isoline equations.
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εðRs; LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρr − ρ̂rÞ2 þ ðρn − ρ̂nÞ2

q
: (51)

Models in which the truncation orders in the two bands were asymmetric yielded errors that
were larger in the middle range of both Rs and LAI parameter values. The overall error was low
in the cases in which the NIR band was described using a higher-order polynomial, such as the
cases of (1,2) and (1,3), unlike the reciprocal cases (2,1) and (3,1). The symmetric cases (1,1),
(2,2), and (3,3) revealed that the error decreased as the polynomial order increased, as expected.

The trend in the errors of the soil isoline equations was characterized by averaging the error
εðRs; LÞ over the range of LAI values tested. Figure 9 shows the resulting errors as a function of
only the soil red reflectance Rs. The lower-order polynomial cases clearly displayed maximal
errors in the middle of the range of Rs values (0.2), whereas the use of a higher-order polynomial
in either or both equations shifted the value of Rs that produced the maximum error toward either
higher or lower values of Rs.

Similarly, the error trend as a function of LAI was computed by averaging εðRs; LÞ over
the range of Rs values. Figure 10 shows a trend distinct from that shown in Fig. 9. Interestingly,
the local minima occurred at two LAI values (LAI ¼ 0.5 and 3) for most of the nine cases.
In other words, the averaged error somehow increased in the middle range of LAI values
(1 < LAI < 2). This fact suggested that if one could improve the accuracy of the soil isoline
in the middle range of LAI values, the overall error would improve dramatically, even in models
based on lower-order polynomials. This possibility is worth investigating in future studies.

Finally, the overall accuracy of the nine cases was evaluated by averaging over the entire
range of values of Rs and LAI (Table 3). Table 3 shows that the order of accuracy decreased
as the polynomial order increased, whereas the asymmetric cases required special attention in
the middle ranges of both LAI and Rs parameters, as shown in Figs. 8, 9, and 10.

Fig. 8 The error log10εðRs; LÞ of the approximated soil isoline equations as a function of Rs and
LAI. The errors are defined as the distance between the approximated soil isolines and the
simulated reflectance spectra.
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6 Discussion

This study introduced a parametric form of the soil isoline equation in which an index was used
as a parasitic parameter. Numerical difficulties associated with singularities in the original sub-
space were overcome by rotating the red and NIR axes through an angle equal to the soil line
slope. Although the derived form included a parasitic parameter, a polynomial of arbitrary order
may be used to represent the soil isoline equation. The derived parametric form suffered from
the drawback that the soil isoline equation implicitly (rather than explicitly) described the
relationship between the red and NIR reflectances.

Fig. 9 Averaged error of the approximated soil isoline equations as a function of Rs. The errors in
Fig. 8 were averaged over the entire range of LAI.

Fig. 10 Averaged error of the approximated soil isoline equations as a function of LAI. The errors
in Fig. 8 were averaged over the entire range of Rs.

Table 3 Averaged errors of the soil isolines over the entire ranges of Rs and leaf area index
values.

mn

1 2 3

mr

1 9.6 × 10−3 5.2 × 10−3 4.7 × 10−3

2 7.4 × 10−3 3.6 × 10−3 0.43 × 10−3

3 4.5 × 10−3 1.2 × 10−3 0.37 × 10−3
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An explicit form of the soil isoline was derived by considering a series of truncation cases.
Although the relationships between the two reflectances were made explicit in these examples,
thederived isolineequationspresented truncationerrors.Numerical investigationsof the truncation
errors in thederivedformsclearly indicatedthat theerrordecreasedas thetruncationorder increased.

The choice of truncation order may be asymmetric, such that the order of the polynomial
describing the red band is not identical to that of the NIR band. An NIR band truncation order
that exceeds that of the red band tends to yield smaller errors compared to the case in which the
opposite holds. Photons at NIR wavelengths tend to scatter more frequently than photons with
red wavelengths. This transport mechanism also suggests that higher-order terms should be used
for the NIR bands to reduce truncation errors for cases in which the truncation orders of the two
bands differ. The numerical results indicated that the overall accuracy of the approximated soil
isoline equations decreased along with the truncation order, as expected. High truncation orders
exceeding two reduced the error to <0.1%.

In conclusion, the soil isoline equations derived here were reasonably accurate and enabled
the use of expressions for further analysis of remotely sensed satellite data. Applications of
the derived equations will be explored in future studies.
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