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Abstract. We proposed a new design method for single freeform reflective
(or refractive) surface tailored to redistribute the radiant flux onto a
prescribed illumination pattern. Unlike the conventional optimization
approaches based on the grid mapping, in this study we estimated
each segmental freeform surface by locally solving a second-order differ-
ential equation, which formulates the energy transportation between each
domain cell. With finite element method via Hermite element, we validated
a series of smooth reflective/refractive surfaces to reallocate the radiant
flux from a point source toward a target plane with specific patterns.
The proposed technique offers a large flexibility by varying the vectors
of each ray with multiple refraction (or reflection), which imposes no restric-
tion on the target distribution, collective solid angle, or even target topog-
raphy. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attri-
bution of the original publication, including its DOI. [DOI: 10.1117/1.OE.53.3.031307]
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1 Introduction
Construction of a freeform surface to reallocate the radiant
flux is a substantial challenge in terms of nonimaging optics.
The basic concept is to convert the radiant flux emitted from
a point source onto a prescribed illumination, usually in
Cartesian coordinate. Parkyn1 firstly pioneered a tessellation
method to map the cell area between a point source in polar
grid with a particular rectangular illumination in Cartesian
grid. The cells of both grid topologies were sized so that
they share common energy. The methodology was based
on the assumption that when the polar cell on the light
source was exactly mapped to the corresponding rectangular
target cell, the flux of the angular cell would be fully
transferred to the target cell accordingly. Each corresponding
pair of cells on these grids has an associated surface
normal vector, and then governs the surface shape using
extrinsic differential geometry. The major concern about
equal flux grid method lies in a fact that the constructed
surface, either reflective or refractive, is unlikely to guar-
antee the integrability condition in the overall surface, and
thus leads to a discontinuous boundary. The cumulative
deviations from the ideal surface normal become more pro-
nounced at the far corners of the output grid. The discontinu-
ous boundary could lead to a problem. The problem is
that a small amount of radiant flux will be distorted by
the sharp cliff. Hence, sufficient partition cells shall be
numbered to confirm the estimated accuracy for surface
construction.

To alleviate the discontinuous issue of freeform, Wang
et al.2 introduced the variable separation mapping strategy
to take into account the normal deviation of the curve
below a present value. The surface curve was regenerated

with tangent vectors along the curve perpendicular to the
normal vector, thus eliminating the accumulated normal
deviation. The proposed scheme constructs a smooth surface
by interpolating the discontinuity surface with non-uniform
rational basis spline (NURBS).3 On the other hand, the inte-
grability condition η ¼ N · ð∇ × NÞ ¼ 0 is necessary in
order to make a smooth freeform surface, where N is the sur-
face normal.4 To fulfill the integrability condition, Fournier3

interpolated the ellipsoids, obtained from Oliker’s algorithm
with appropriate grid partition, by using the NURBS where
parameters of the NURBS were determined by minimizing
the residual curl η. Although the surface can be made smooth
and the resulted radiant flux can be less distorted via the
above mentioned approaches, the amount of energy
deviation is still difficult to be estimated before the freeform
surface is constructed. Furthermore, the computational costs
of the constrained optimization for the NURBS’ parameters
may rise significantly and the convergence is not guaranteed
as the number of grid partition increases.

In additional to the tessellation method, the freeform sur-
face design problem is also related to the solution of the well-
known Monge-Ampere (MA) equation. In 1972, Schruben
first derived the MA equation obtained from reflector design.
Beginning in 1980s until the present, Oliker et al. formulated
the freeform problem into a highly nonlinear MA type of
partial differential equation (PDE).5–9 The MA PDE also
appears in other research fields, such as differential geom-
etry, optimal control and mass transportation, meteorology,
and geostrophic fluid.10–12 Although many works about
existence and regularity of MA PDE have been conducted,
numerical computation of freeform surface reconstruction by
solving the MA PDE remains a challenge in practice. We are
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curious if there exists a systematic way to construct the free-
form in which not only the surface is guaranteed to be
smooth, but also the correspondence between light source
and target plane is ensured under a controllable energy
deviation.

In this article, we formulate the ray forward and inverse
propagation with negligible energy deviation within the MA
PDE framework. By following the works of Caffarelli and
Oliker13, the freeform considered here is assumed to be con-
vex. The model is based on local energy conservation in
which the flux correspondence associated with each local
domain is prescribed. We take advantage of mathematical
analysis of the MA PDE and successfully formulate the free-
form design problem into the popular finite element para-
digm. The formulation could maintain the ability to
control the light beam and guarantee a smooth freeform sur-
face. Moreover, this article describes this in detail by going
through the different modeling steps of the model. All the
main restrictions influencing the target distribution, collec-
tive solid angle, or source distribution are discussed, along-
side the viability of realizing an optical surface for different
specific requests.

2 Freeform Model in Localized PDE
To develop a method for freeform construction subject to the
source-target information, we must deduce an adequate,
physically realistic model of ray propagation in the free
space. The model can then be employed to understand the
reflective (refractive) forward process of rendering illumi-
nance according to a known optical configuration. Also,
the model is applicable to the inverse algorithm of estimating
the freeform surface from a given source-target correspond-
ing condition. First of all, the ray transportation must satisfy
the energy conservation among coordinate transforma-
tion.14,15 The radiant intensity I (Watts∕sr) of a point source
(in polar domain Ωθ) and prescribed illuminance distribution
E (Watts∕m2) of the target region (in Cartesian domain Ωx),
in one dimension, can be related asZ

Ωθ

IðθÞdθ ¼
Z
Ωx

EðxÞdx: (1)

The goal is to design a freeform surface by analyzing the
potential and limitation of using the PDE. In this article, the
freeform surface is assumed to be continuous and convex. By
partitioning the global domain Ωθ and Ωx into many local
subdomains Ωi

θ and Ωi
x, so that each corresponding pair sat-

isfies the equal flux i ¼ 1; 2; : : : ; n, we are able to ensure the
convergence of the integration. As long as the number of
partitions is sufficiently large, the freeform can be considered
to be a flat surface. As a result, a reduced but simplified
representation of a freeform can be derived on each
local domain. Hereafter, a flat surface criterion to the free-
form in each local domain is called a small local planar
approximation.

The representation of the local freeform is indeed a non-
linear differential equation and shall be derived in the follow-
ing. First, let us introduce some notations. Global coordinate
frame is denoted by ½�0 with basis vectors fe01; e02g and origin
point O. The target plane T is expressed by a plane equation
C0 · ½X�0 − d0 ¼ 0, where C0 ¼ ½ c1 c2 �T , d0, and ½X�0 are
the normal vector, shift and spatial variables, respectively.

Although the laws of reflection (or refraction) are invariant
with coordinate system, solution of freeform problem
requires that the relations derived from these laws can be
expressed in a coordinate system appropriate to the geometry
of the given problem. Hence, we define a local coordinate
system, by which the i’th local coordinate of any vector
V is denoted by ½V�i with corresponding orthogonal basis
fei1; ei2g and local origin Oi. Coordinate transformation
from i’th to j’th coordinate system can be conducted via
a sequence of operators, ℋj

i ¼ T jRj
i , where R

j
i and T j re-

present the rotation of basis vectors and translation:
T jðVÞ ¼ ½V�j þ ½Oi −Oj�j, respectively. By means of sub-
sequent intermediate local coordinates, the light source O
and the target plane T can be linked as ½O�i ¼ ℋi

0½O�0
and C0 · ℋ0

i ½X�i ¼ d0, respectively.
The scenario of our freeform construction is schemati-

cally in Fig. 1. The segmental freeform surface to be
constructed on i’th local coordinate system can be analyti-
cally presented as a function ½A�i ¼ ½u; fðuÞ� with surface
normal as

½N�i ¼ ð−fu; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
f2u þ 1

p : (2)

As shown in Fig. 1(a), while a ray from point source O is
hitting on the point A at the freeform reflector, the ray is
guaranteed to be transported toward the target plane T.
The refraction law in vector form is

n2
n1

½XA�!�i

k½XA�!�ik
¼ ½OA

�!�i

k½OA
�!�ik

−

2
64
 

½OA
�!�i

k½OA
�!�ik

· ½N�i
!

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22−n21þn21

 
½OA
�!�i

k½OA
�!�ik

· ½N�i
!

2
vuut

3
75½N�i; (3)

Fig. 1 (a) Global coordinate system: origin (O) locates at light source
with basis vectors fe01;e02g. Local i ’th coordinate system: origin (Oi )
locates at freeform surface with local basis vectors fei1; ei2g.The
angles θ and ϕi

0 are the angle of OO
��!i

with OA
�!

and ei2, respectively.
A 1-D freeform model assumes that the global coordinate and local
coordinate are coplanar. (b) Partitioning Ωθ and Ωx into n subdomain
Ωi

θ and Ωi
x for i ¼ 1; 2; : : : ; n is based on equal flux theory.

Computation domain Ωi
u that unifying variable θ and x into local var-

iable u is mapped from subdomain Ωi
θ and Ωi

x .
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where n1 and n2 represent the refraction indexes near the
source side and target plane side, respectively. For the reflec-
tion law,7 the refraction index can be defined by n1 ¼ 1.0 and
n2 ¼ −1.0. Here, we size each cell of subdomain pair (Ωi

θ
and Ωi

x) to allow equal flux transfer. In order to derive the
freeform surface via the preceding equations, we must intro-
duce an intermediate variable u in the computational domain
(Ωi

u) to link the computation in both source and target
domains (Ωi

θ and Ωi
x). By changing the variable, Eq. (3)

can be rewritten as

Z
Ωi

u

IðuÞ dθ
i

du
du ¼

Z
Ωi

u

EðuÞ dx
i

du
du: (4)

Obviously, the integral form of energy conservation,
Eq. (1) can be represented by a differential equation in sum-
mation:7

EΩi
u
·
dxi

du
− IΩi

u
·
dθi

du
¼ 0 for u ∈ Ωi

u: (5)

Let ðuih; 0Þ be the coordinate of the hitting point where the
incident rayOA

�!
with light source ½O�i ¼ ðLi

x; Li
zÞ hits on i’th

local x-axis. The x-coordinate of the hitting point uih can be
expressed as two separate functions of u and θi by trigono-
metric formula:

uihðθiÞ ¼ ρ0
sinðθiÞ

cosðθi þ ϕi
0Þ
; (6)

uihðuÞ ¼
−fðuÞðu − Li

xÞ
fðuÞ − Li

z
þ u; (7)

where θi and ϕi
0 are the angle of OO

��!i
with OA

�!
and ei2,

respectively, and ρ0 is the distance between O and Oi.
The transformation between variables u and θi can be linked
by the joint point uh and the Jacobian chain rule becomes

dθi

du
¼ dθi

duih

duih
du

: (8)

Similarly, suppose the incident ray OA
�!

is reflected onto
the point ½X�i ¼ ðxi; ziÞ at the target plane T. The variables xi
and u related by the law of reflection can be expressed as

k½OA
�!�ik

k½XA�!�ik
ðu − xiÞ ¼ 2ð½OA

�!�i · ½N�iÞ½−f 0ðuÞ� − ðu − Li
xÞ;

(9)

k½OA
�!�ik

k½XA�!�ik
½fðuÞ − zi� ¼ −2ð½OA

�!�i · ½N�iÞ½−f 0ðuÞ�

− ½fðuÞ − Li
z�: (10)

Dividing Eqs. (9) by (10), the equation that defines a local
freeform surface can be obtained:

u − xi

fðuÞ − zi
¼ 2ð½OA

�!�i · ½N�iÞ − ðu − Li
xÞ

−2ð½OA
�!�i · ½N�iÞ½−f 0ðuÞ� − ½fðuÞ − Li

z�i
:

(11)

If we fix the source and target plane position, the freeform
surface defined in Eq. (11) can also be considered as a para-
meterized surface where the parameter is the x-coordinate of
the i’th coordinate system. The freeform parameters depend
on the external geometry at which each optical route O-A-X
constitutes an epipolar plane. In order to transform the under-
determined Eq. (11) to a determined problem, we replace zi

by xi through the equation C0 · ℋ0
i ½X�i ¼ d0:

xiðuÞ ¼ Ci
0f

0ðuÞ þ Ci
1fðuÞ þ Ci

2uþ Ci
3

Ci
4f

0ðuÞ þ Ci
5fðuÞ þ Ci

6uþ Ci
7

þ Rðu; fÞ; (12)

where Rðu; fÞ ¼ Oðu2; uf; uf 0; f2; ff 0; f 02Þ is the high
order nonlinear term that can be neglected under the small
local planar approximation, and the coefficients, Ci

j,
j ¼ 1; 2; : : : ; 7, are constants with respect to the i’th local
coordinate system. For the refraction case, the variables xi

and u can be related by the law of refraction following a sim-
ilar derivation. After differentiating Eq. (12) to obtain
Jacobian dxi∕du and inserting Eqs. (8) and (12) into
Eq. (5), we can devise the local reflection (refraction) free-
form surface to a nonlinear differential equation:

αi1f
0 0 þ αi2f

0 þ αi3f þ αi4 ¼ 0; (13)

where αi1, α
i
2, α

i
3, and αi4 are coefficient functions subject to

low order derivatives of f. This equation describes the ray-
tracing map and the energy redistribution. The total energy is
conserved as ∫ Ωi

x
EðuÞxðuÞdu in each local domain.

Therefore, the energy deviation is mainly contributed by
the neglected term Rðu; fÞ and can be controlled when
the integral ∫ Ωi

x
EðuÞRðu; fÞdu can be estimated.

The construction of freeform surface by numerically dif-
ferential formulation has an advantage in that we can regu-
larize the smoothness tolerance by setting the partition
number (Ωi

θ and Ωi
x) in a tradeoff between computational

efficiency and surface smoothness. In order to ensure the
numerically estimated accuracy of freeform surface, suffi-
cient partition cells shall be numbered in both domains.
Here, we impose the edge rays Ri−1 and Ri in the polar
cell toward the corresponding boundary ½bi−1; bi� in the
Cartesian cell, so the radiant flux is fully transferred without
stray loss. The edge ray,Ri, reflected by the freeform surface
is propagating toward the corresponding point bi. We shall
set a reasonable right end point of the intermediate cell Ωi

u,
by which the freeform possesses convexity in the local
domain. To solve the nonlinear PDE in Eq. (13), we employ
the vanished moment method proposed by Feng and Neilan
and use Newton’s method to find the adequate root function.
The linearized equation at each iteration step can be solved
by the finite element method. Here, we skip some straight-
forward but tedious expansion and rearrangement. Figure 2
demonstrates the key steps of the freeform construction proc-
ess. The algorithm of freeform construction in this session
can be summarized as following:
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3 Freeform Surface via Local Reconstruction
Algorithm: Error Evaluation

In order to validate the proposed freeform scheme, we first
constructed a surface by the previous algorithm and com-
pared it with a known parabolic reflector; both are aimed to
deliver a collimation beam as shown in Fig. 3. A point
source was placed at the focal point ðx; yÞ ¼ ð0; 10Þ of
an ideal parabolic reflector y ¼ −x2∕12þ 13. Here, we
limit the emitted angle from the point source within the
range of Ωθ ¼ ½−119 deg; 119 deg�, and the radiant flux
reflected by the ideal parabolic reflector was directed
toward the given target planeΩx ¼ ½−10; 10�with a uniform
and parallel propagation. Figure 3(a) exhibits the surface
comparison between the curve constructed via proposed
algorithm and ideal parabolic curve. The surface error es ¼
maxx∈Ωx

kSFFðxÞ − SPðxÞk, maximum deviation between
the constructed freeform surface (SFF) and the ideal para-
bolic curve (SP), is on the order of 10−4 to 10−6, which is
extremely small and quadratically inverse to the number of
partition cells. The results are in agreement with the theo-
retical prediction that the error comes from the finite
element method with Hermite element.16–18

4 Construction Algorithm: Two Design Types

4.1 Uniform Illuminance

After validating our freeform algorithm with a comparative
parabolic surface by forward testing, we now aim to achieve
a uniform illuminance with a geometric correspondence by
the freeform surface via local reconstruction algorithm (FS-
LRA). As shown in Fig. 4, a 20-m-wide target plane was
placed beneath a point source with 6-m distance. The emitted
angle from the point source was confined for reflection and
refraction within Ωθ ¼ ½−30 deg; 30 deg�. With a mere 80
partition cells and 960 partition cells in both source-target

subdomains, a freeform reflector and refractor can be gener-
ated in about 1.1 and 10 s, with 2.3 GHz Intel® dual core
computer. The study employed a ray tracing simulation on
the constructed freeform surface with a commercial tool
LightTools®, in which light rays from the source were inci-
dental to the target plane. The root-mean-square (RMS) non-
uniformity is merely 1.05% (reflector) and 2.10% (refractor),
respectively. It is noted that the accuracy or partition number
of FS-LRA is highly dependent on the tolerance of the free-
form surface. For uniform illuminance request in both

Algorithm Freeform surface via local reconstruction (FS-LRA).

Input: Ωθ: Domain of light source: Ωx : Domain of target; O: Light
source; T; Target plane equation; Global coordinate frame ½�0;
O1: initial point of freeform surface:

Output: f ðxÞ: freeform surface function;

1. Partition the source and target domain into Ωi
θ and Ωi

x for
i ¼ 1;2; : : : ; n;

2. Setup position and orientation of the freeform (i.e., determine
global and the first local coordinate frame ½�1):

3. for i ¼ 1 to n do

4. Determine Ωi
u ;

5. Solve equation (13) on Ωi
u ;

6. Setup the i þ 1-th coordinate frame ½�iþ1;

7. Apply transformation operator Hiþ1
i to the light source and

target plane;

8. end for

Fig. 2 Overview of the freeform construction process. Step 1: The
source domain and target domain are divided into n subdomain
pairs ðΩi

θ;Ωi
x Þ, i ¼ 1;2; : : : ; n. Step 2: The global information including

the location of light source and the target plane is transformed into i ’th
coordinate. Step 3: The computational domain Ωi

u is determined by
the corresponding subdomain pair ðΩi

θ;Ωi
x Þ, the refraction or reflection

laws and the convexity of the freeform. Step 4: The freeform surface is
calculated by solving Eq. (13) on Ωi

u using Hermite finite element
method. Step 5: The (i þ 1)’th coordinate system is defined by the
rightmost boundary point Oiþ1 and the normal and tangent vectors
atOiþ1. If i is not equal to n, go to step 2. Step 6: The freeform surface
is assembled from local surfaces.
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reflect/refractive cases, a monotonic curve is accessible with
the prescribed simple target surface. Because the mathemati-
cal form in the refraction case is more complex than that in
reflection case, 960 partitions are required for convergence to
achieve the design uniform illumination pattern, but only 80
partitions are required for the constructed reflector to achieve
the same uniformity.

4.2 Linear Varying Illuminance

In this example, we extended our technique to create a pre-
scribed color illumination by a pair of independent sources
with different colors. Figure 5 shows the schematic diagrams
of the system layout for both reflect/refractive cases. With a
20-m target plane for both cases, we aimed to create a lin-
early varying international commission on illumination
(CIE) chromatic ðx; yÞ along the x-direction associated
with two color sources. The distance between source and tar-
get plane is 10 and 70 m, respectively. The light sources
leave the center at 10 m and 15 m, respectively. The different
configuration conditions of reflection and refraction design

are to achieve desired illuminance performance. As shown in
Figs. 5(c) and 5(d), the illuminances feature a high linearity
along the x-direction. There are only about 5.58% and 1.52%
RMS nonuniformity with the perfect chromatic line for
reflection and refraction cases, respectively.

5 Conclusion
In this article, we proposed a freeform model based on local
energy conservation associated with a series of coordinate
transformation. The major advantage of this method is to
exploit the well-proven existence and continuity of an elliptic
nonlinear differential equation of the Monge-Ampere type.
We successfully formulated the freeform design into a finite
element paradigm with Newton’s iteration. The key maneu-
ver is to unify the variables (θ and x) in both domains (Ωi

θ
and Ωi

x) into a common intermediate variable u in the com-
putational domain (Ωi

u). After imposing the small local pla-
nar approximation, which is absolutely valid with a sufficient
number of partition cells, a complete freeform reconstruction
algorithm can be developed. In addition, the segmental dif-
ferential formulation is capable of taking numerical error into
account in each step. The proposed surface parameterization
guarantees the surface smoothness with no restriction on the
desired target distribution, collective solid angle, or source
distribution, respectively. This technique still leaves many
opportunities open and clearly more research must be carried

Fig. 3 (a) S: point light source. The ideal parabolic curve is
y ¼ −x2∕12þ 13. (b) The maximum surface difference between
ideal parabolic curve and numerical surface. The surface error with
respect to subdomain numerical approximates a function SðxÞ≈
1∕x2. The amount of error reduces quadratically as we increase
the number of partition cells.

Fig. 4 (a) and (b) Layout of the freeform surface reflector and refractor
is designed for uniform illuminance, respectively. (c) Illuminance dis-
tribution on the target plane. Inset is the magnification of illuminance
plateau pattern. The nonuniformity of reflection case was well con-
trolled within 1.05% RMS and 1.89% peak-to-valley. (d) The nonun-
iformity of refraction case was well controlled within 2.10% RMS and
4.01% peak-to-valley.

Fig. 5 (a) and (b) Layout of the freeform surface reflectors and refrac-
tor is designed for chromatic varying illuminance. The CIE chromatic
of two point sources is red ðx; yÞ ¼ ð0.73; 0.27Þ and green ðx; yÞ ¼
ð0.38;0.62Þ. (c) and (d) Comparison of illuminance pattern by the con-
structed freeform surface (dash line) and that with ideally linear shape
(solid line). The nonuniformity with the ideal linear case was well con-
trolled within 5.58% RMS and 1.52% RMS in reflection case and
refraction case, respectively. (e) and (f) Five sampling points along
x -direction (−10, −5, 0, 5, and 10 m) exhibit a linearly chromatic
shift in CIE 1931 x , y chromaticity coordinate in both case.
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out to explore its potential in full. First, at this moment, the
issue was tackled in a one-dimensional case; complete treat-
ment in consideration of twist deformation in freeform sur-
face is underway. Second, point source approximation is
another subject to be addressed when the freeform structure
was placed in proximity of the light source such as light
emitting diodes applications. The preliminary results pre-
sented in this article, however, indicate that parameterizing
the freeform surface via local freeform PDE may create
another route in the field of freeform optics, as it has the
potential to take freeform design into many nonimaging
applications.
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