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Abstract. The bidirectional reflectance distribution function (BRDF) is used to describe reflec-
tances of materials by calculating the ratio of the reflected radiance to the incident irradiance.
While it was found that the isotropic models maintained symmetry about ϕs ¼ π, such symmetry
was not maintained about the θs ¼ θi axis, except for close to the specular peak. This led to the
development of a data-driven metric for how isotropic a BRDF measurement is. Research efforts
centered around developing an algorithm that could determine material anisotropy without hav-
ing to fit to models. This algorithm was tested using high fidelity data (containing off-axis
BRDFs), which was collected via a modified Complete Angle Scatter Instrument (CASI®) with
a CCD array detector. The algorithm accurately characterized the degree of isotropy for four out
of five materials and worked for cases where the BRDF is higher than 100 sr−1. This algorithm is
intended to improve BRDF characterization, and the applications of light curve analysis, scene
generation, and remote sensing. © The Authors. Published by SPIE under a Creative Commons
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1 Background

The bidirectional reflectance distribution function (BRDF) is a description of the ratio of the
reflected radiance to the incident irradiance,1

EQ-TARGET;temp:intralink-;e001;116;327frðω̂i; ω̂s; λÞ ¼
dLrðω̂i; ω̂s; λÞ
dEiðω̂i; λÞ

; (1)

where fr is the BRDF, ω̂i is the incident vector with respect to the material’s surface normal, ω̂s

is the “scattered” vector, Lr is the reflected radiance, Ei is the incident irradiance, and λ is the
respective wavelength. Wavelength was not considered in this study, as only one wavelength,
λ ¼ 632.8 nm, was used to illuminate samples.

The rendering equation at an intersection point with a material, which is where the BRDF
often arises in practical applications, is2

EQ-TARGET;temp:intralink-;e002;116;210Lsðω̂sÞ ¼ Leðω̂sÞ þ
Z
Ωþ

frðω̂i; ω̂sÞLiðω̂iÞ cos θidω̂i; (2)

where Ls is the scattered radiance, Li is the incident radiance, Le is the emitted radiance, and
Ωþ represents the incident hemisphere. This equation shows that the BRDF is crucial to describe
the reflected radiance in applications such as scene generation and remote sensing.

BRDF is commonly represented using either physical optics models or microfacet models.
The microfacet models use a geometric optics approximation to reduce computational complex-
ity, making modeling BRDF more feasible for most applications, including light curve analysis3
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and scene generation.4 These models approximate a rough surface as a set of microfacets from
which incident radiation is scattered.4

Butler composed an equation describing the general form of the microfacet model, in terms
of standardized Rusinkiewicz coordinates5 and a uniform notation6 in Eq. (3).1 Generally, micro-
facet models include a surface reflection term, which constitutes the first term in Eq. (3), and
occasionally a volumetric scattering term (the second term), and almost always a Lambertian
scattering term, (the final term),6

EQ-TARGET;temp:intralink-;e003;116;651frðwi; woÞ ¼ ρsPðω̂i;ωsÞDðω̂hÞFðθdÞGðω̂i; ω̂sÞσðθi; θsÞ þ ρvVðω̂i; ω̂sÞ þ
ρd
π
: (3)

Breaking down each component of Eq. (3) further, G is the geometric attenuation factor and
describes the shadowing and masking of reflections off one facet by another facet.6 FðθdÞ is the
Fresnel reflectance and can be replaced by a Rayleigh–Rice Polarization factor term in various
BRDF models.7 σðθi; θsÞ is a term used to convert from scattering cross section to BRDF.6

Dðω̂hÞ is the distribution function of the microfacet surface normals, where ω̂h is used to refer
to these surface normals. P merely represents a prefactor term included for some of the micro-
facet models to get each in the same form.6 The distribution function was the main focus of this
study, as it is the term in the overall BRDF equation that changes between isotropic and aniso-
tropic models.

There exists a whole host of microfacet models employing various distribution functions,
some employing isotropic distributions and others employing anisotropic distributions. For the
context of this paper, anisotropy is given to mean any surface that produces directionally de-
pendent reflection (as the specular term in microfacet models describes surface reflection).
This can be due either to a material with directionally dependent surface characteristics, such
as machine linings or a change in material across a surface (an inhomogeneous sample).
Equations (4)–(6) describe some of the distribution functions employed in microfacet models.
Equation (4) shows the Beckmann distribution function (a Gaussian distribution), controlled by
width σg, and the in-plane direction of the microfacet normal, θh. This distribution function
(or an approximation where tanðθhÞ ¼ θh) results in isotropic reflection and is used in the
Ward–Duer,8 Torrance–Sparrow,4 Cook–Torrance,9 and Priest microfacet models.10

EQ-TARGET;temp:intralink-;e004;116;371DgðθhÞ ¼
1

2πσ2g cos
4ðθhÞ

exp

�
−
�
tan2ðθhÞ
2σ2g

��
(4)

The Ward–Duer model8 can be modified to use an anisotropic distribution function in lieu of
an isotropic function. This anisotropic distribution is shown in Eq. (5). It is worth noting that to
get Eq. (5) in the form of isotropic models, one can set mx ¼ my ¼ m ¼ ffiffiffi

2
p

σg. However, in
anisotropic models, mx and my are allowed to vary along azimuthal planes. Another difference
between models is the required inclusion of the out-of-plane azimuthal coordinate of the micro-
facet surface normal, ϕh.

EQ-TARGET;temp:intralink-;e005;116;248Dðω̂hÞ ¼
1

πmxmy cos
4 θh

exp

�
−tan2 θh

�
cos2 ϕh

m2
x

þ sin2 ϕh

m2
y

��
(5)

Not all models employ a Gaussian distribution function to describe the orientation of
microfacets. Equation (6) is a Hyper–Cauchy distribution function, where q and s are parameters
used to control the width of the distribution function. When q ¼ 3∕2, a function similar to a
Lorentzian results, and a Gaussian-like function results when q is large.6 The Hyper–Cauchy
distribution function is used in the Wellems microfacet model.6,11

EQ-TARGET;temp:intralink-;e006;116;140DgðθhÞ ¼
ðq − 1Þ

�
s

ffiffiffi
2

p �
2q−2

π cos4ðθhÞ
��

s
ffiffiffi
2

p �
2 þ tan2ðθhÞ

�
q (6)

Beyond the models enumerated above, there also exists a cosine-lobe distribution function,
which can describe either isotropic and anisotropic reflection. Cosine-lobe distribution functions
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are employed in the Blinn-Phong6,12 (isotropic only) and the Ashikhman–Shirley (both isotropic
and anisotropic) models.6,13

As one can observe through the host of equations enumerated and those not listed, there is no
standard or agreed upon BRDF model to describe isotropy or anisotropy.6,14 The majority of
these models solely employ an isotropic distribution function,6 which can provide problematic
fits, especially for more specular/glossy BRDFs. This study considers the degree of isotropy
presented by various samples and develops a metric to assess how not isotropic a material is.

2 Methodology

As mentioned previously, the distribution function changes significantly between isotropic and
anisotropic materials. For many materials, the distribution function is the most significant term.
Thus, the distribution function was the first investigation of this study to determine what con-
stitutes “isotropic” reflection. While several distribution functions were listed in the previous
section, the Beckmann distribution function [Eq. (4)] was used as it is relatively computationally
inexpensive and commonly employed.

As Eq. (4) depends on θh, the impact of changing θi, θs, and ϕs on θh was investigated. In
plotting the distribution function at varying θi and σg, the contour plot showed that the peak of
the distribution function occurs at θi ¼ θs and ϕs ¼ π, which is the specular peak, when ϕi ¼
0 deg (representing the forward scatter case). The smaller σg was made to be, the narrower the
peak. These results were to be expected, as θh ¼ 0 deg is the peak of the distribution function,
and only occurs where θi ¼ θs and ϕs ¼ π.

Considering these characteristics of the distribution function, the symmetry of the distribu-
tion function about the specular peak was then evaluated to develop a definition of isotropy.
Symmetry was first evaluated about the point ϕs ¼ π. First, an arbitrary θi and θs were set and
plugged into the distribution function [Eq. (4)]. The relationship in Eq. (7) was then used to show
that the distribution function is symmetric about ϕs ¼ π, as there is no difference if one moves a
distance b (arbitrary) in either direction from this point.

EQ-TARGET;temp:intralink-;e007;116;391Dðθi; θs; π þ bÞ −Dðθi; θs; π − bÞ ¼ 0 (7)

The same analytic analysis was done moving an arbitrary distance, b, in θs space. For small
increments of θs off of θi ¼ θs (0.5 deg), the relative percentage differences between the dis-
tribution functions were small (difference of 0.2%), yet significant in comparison to the zero
difference in ϕs. The asymmetry in θs is exacerbated as σg decreases, as the relative difference
for σg ¼ 0.01 is 1.5% in comparison to the 0.2% for σg ¼ 0.1. The asymmetry in θs was also
generalized by finding an analytic expression, as in Eq. (7) and then by taking the Taylor series
expansion about θh ¼ 0, (i.e., the specular peak). The analytical expression for the symmetry
about θi ¼ θs is reduced to,

EQ-TARGET;temp:intralink-;e008;116;261

Dðθi; θi þ b;ϕsÞ −Dðθi; θi − b;ϕsÞ ¼
8

π

−1
cosðb − θiÞ þ cos4ðθiÞ

exp

�
−2 − cosðbþ ϕsÞ þ : : :
8 cosðb − θiÞ þ cos4ðθiÞ

�
þ : : : (8)

Equation (8) does not reduce to zero, unlike with Eq. (7), indicating that symmetry is not
maintained about θi ¼ θs. For the Taylor series expansion about θh ¼ 0, the expression for the
distribution function reduced to,

EQ-TARGET;temp:intralink-;e009;116;151DðθhÞ ¼
1

2πσ2g
þ θ2hð−1þ 4σ2gÞ

4πσ4g
: (9)

In the case that θh is near zero, the expression reduces to the first term of Eq. (9), which is
why the degree of symmetry (i.e., smaller relative percentage difference) in θ is inversely propor-
tional to σg.
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These relationships were then expanded to the full BRDF, using a simplification of Eq. (3),
and the Rayleigh–Rice Polarization factor, Q, in place of F. An analytic evaluation was difficult
to do in the case of the full BRDF, so the differences are shown in Fig. 1 for two ϕs values that are
equidistant from ϕs ¼ π, specifically ϕs ¼ 3π∕4 and 5π∕4. In Fig. 1, the plot is in terms of θh, as
the constant θi and varying ϕs values were plugged into θh before solving for the BRDF (which
is a function of θh). These differences are on the order of 1 × 10−15, which is likely due to com-
putational rounding errors. Thus, it is safe to say that symmetry in ϕs is maintained with the full
BRDF, despite the additional terms.

It is worth noting that although the analysis of isotropic BRDF models was done for micro-
facet models only (and simulated data were generated using the aforementioned models), some
elements of physical optics models were used in this study. Specifically, BRDFs were converted
to direction cosine space, as the isotropic Beckmann distribution function [Eq. (4)] is symmetric
in this space. This distrbution function can be correlated to the direction cosine space
coordinates15 as shown by Eq. (10), where Δα and Δβ represent the direction cosine space
coordinates.16

EQ-TARGET;temp:intralink-;e010;116;307tan2ðθhÞ ¼
Δα2 þ Δβ2

cosðθiÞ þ cosðθsÞ
(10)

This symmetry is further demonstrated analytically in Eqs. (11) and (12), where Δα and Δβ
are plugged into Eq. (4) to evaluate the rotational symmetry. In Eqs. (11) and (12), b is given to
represent a constant step in direction cosine space.

EQ-TARGET;temp:intralink-;e011;116;225DðΔαþ b;ΔβÞ −DðΔα − b;ΔβÞ ¼ 0 (11)

EQ-TARGET;temp:intralink-;e012;116;182DðΔα;Δβ þ bÞ −DðΔα;Δβ − bÞ ¼ 0 (12)

The symmetry of isotropic BRDFs about ϕs ¼ π and in direction cosine space were useful
parameters in developing an algorithm assessing the degree of isotropy. (This algorithm will be
detailed in the next section.) However, it should be noted that anisotropic models were also
investigated but did not produce any fruitful metric for assessing a material’s anisotropy.
This, paired with the fact that anisotropic models rely heavily on sample alignment (so that
ϕi produces a ϕh ¼ 0) is why the focus of this study is on the degree of isotropy and not the
degree of anisotropy.

Fig. 1 Difference between the full BRDF (un-normalized) functions when θi and σg are kept con-
stant at 40 deg and 0.1 deg, respectively and ϕs is varied from 3π∕4 to 5π∕4 (in radians). As one
can see, the difference is minimal, on the order of 10−15, which is likely due to computational
rounding error in the trigonometric functions.
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3 Results

3.1 Algorithm

The algorithm, used to assess the degree of isotropy present in simulated and exprimental data, is
detailed below. Given BRDF measurements of a material at a certain θi in scatter coordi-
nate space:

1. Measure the mean symmetry about ϕs ¼ π.
2. Convert to direction cosine space.
3. Measure the diameter, x and y center of each contour, the full width half maximum

(FWHM) of the data against Δα, and the eccentricity of each contour centered about the
peak BRDF value.

4. Scale the FWHM and diameter measurements according to θi.
5. Combine all of the data for the material (for all θi), and find the standard deviations for

scaled diameter, ðx; yÞ center, FWHM, and eccentricity.
6. Find the mean of the symmetry and eccentricity measurements.

7. Compare each of these parameters to the baseline (find percentage differences).
8. Weight each parameter by the appropriate factor.
9. Find the final score and categorize each material as isotropic or anisotropic. Scores lower

than 1 are highly isotropic, scores 1–10 are materials tha lean isotropic, scores greater than
10 are anisotropic, and those >30 are highly anisotropic.

3.2 Simulated Data/Beam Signature Data

The algorithm developed from the investigation of BRDF models was first tested on simulated
data sets to establish baselines for isotropy. These model-generated datasets served as references
and were to used established an overall algorithm, as well as a baseline uncertainty for the algo-
rithm. First, the mean symmetry was found by folding the data in half about the point ϕs ¼ π and
finding the mean difference above and below that point. The mean difference for the symmetry
was found to be on the order of computational rounding error. Next, the data were converted to
direction cosine space, and the FWHM was found by plotting the BRDF data against Δα. This
was done because although the distribution function is symmetric in direction cosine space, the
BRDF is not fully symmetric, yet the FWHM remains constant as θi increases. Figure 2 shows a
contour plot of the simulated BRDF data in direction cosine space. This contour plot was used to
measure several parameters of the algorithm, including the scaled diameter, ðx; yÞ center, and
eccentricity.

Referring to Fig. 2, each contour is measured by converting the image to pixel space and
performing a Hough transform of the image to measure various parameters. For example, the
scaled diameter parameter measures the diameter of the outermost contour, multiplied by a scal-
ing factor to account for how a change in θs is not the same for each θi in Δβ. The outermost
contour level is set to be two orders of magnitude below the peak. The eccentricity parameter
measured the eccentricity of each contour, and recorded a mean and standard deviation at each
θi. The ðx; yÞ center parameter measures the standard deviation of where each contour is cen-
tered, to rule out anisotropic cases where the eccentricity remained consistent, but the contours
were measured from rapidly varying points. Table 1 summarizes the results of these measured
parameters for the simulated isotropic data for σg ¼ 0.005. The symmetry parameter is not
recorded in the table, but is recorded as 0, meaning that there is no difference as one moves
off ϕs ¼ π in either direction. Several of the columns in Table 1 are measured in pixels, as these
measurements are from the Hough transform of contour plots (similar to Fig. 2) and thus
recorded in image space rather than scatter coordinate space. Since the scale of these plots are
set to the same range in direction cosine space, the parameter measurements in pixel space are
consistent.

Before testing the algorithm on experimental data, the algorithm was also run on beam sig-
nature data. The data collection set-up is described fully in Small’s SPIE conference paper.17,18

Overall, the relative uncertainty present in data collected via the modified Complete Angle
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Scatter Instrument (CASI) system was between 4% and 17%, with the highest uncertainty being
present in the more diffuse samples due to the neutral density filter uncertainty, which affects the
CCD uniformly.19 The beam signature was a Helium–Neon laser source passing directly to the
CCD detector. As the beam did not reflect off anything, its radial symmetry was assumed to be
representative of an isotropic sample. Any asymmetries captured are likely due to noise or from
the off-axis parabolic mirror in the laser set-up. There exist aberrations and imperfections in the
optical set-up, so the beam is not perfectly Gaussian at the detector. Figure 3 shows the beam
signature with a Gaussian filter of σ ¼ 1 to filter out some of the noise.

The beam signature data compare well to the simulated data set, as shown in Table 2.
However, measurements were only taken for θi ¼ 0 deg, as the beam does not reflect off any
surfaces. The differences between the beam signature and simulated data helped to establish
baselines because the beam was not perfectly symmetric compared to the simulated data.
The baselines are summarized in Table 3.

The scaled diameter and FWHM baselines were set by the simulated data set, as these change
with θi, and the beam signature data only has one θi, whereas three θi’s were recorded for the
simulated data. The standard deviation of the ðx; yÞ centers (referring to the centers of contours)
is also pulled from the simulated data, as it was actually higher for this data set than the beam
signature. The mean eccentricity and standard deviation of eccentricity (which are pulled from
the beam signature data) are thus used to account for noise in the experimental setup by serving
as isotropy baselines. Using these baselines, a total relative uncertainty in the algorithm was

Table 1 Table summarizing various parameters for the simulated isotropic data collected at
θi ¼ 20 deg, 40 deg, and 60 deg for a set σg ¼ 0.005. The standard deviations for each parameter
are at most 16% of the mean, which indicates that for isotropic materials, the measured param-
eters shift little as θi increases.

Material
θi

(deg)
Mean

eccentricity

Scaled
diameter
(pixels)

X center
(pixels)

Y center
(pixels)

FWHM
(unitless)

Sim isotropic 20 0.89 130.95 132.98 114.34 0.012

Sim isotropic 40 0.81 136.41 136.63 109.03 0.014

Sim isotropic 60 0.82 136.41 136.63 108.50 0.011

Average — 0.84 134.80 134.79 110.62 0.012

STD — 0.04 3.35 1.82 3.23 0.002

Fig. 2 Simulated isotropic BRDF data for σg ¼ 0.005 and θi ¼ 20°. The average eccentricity was
0.897� 0.006 for this particular θi , indicating that the eccentricity of contours remains relatively
low (near circular) as well as constant for isotropic BRDFs.
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determined. The numeric value for degree of isotropy was computed as
PðwixiÞ, where wi is the

weight, and xi is each individual metric value. Using the weights of each parameter paired with
the relative uncertainty (standard deviation divided by the average value), error propagation was
performed to find a total relative uncertainty of 1.64%.

3.3 Testing on Experimental Data

After analyzing the simulated data and beam signature to establish isotropy baselines, five differ-
ent samples were used to evaluate the algorithm. The first sample was a highly specular metallic
front-surface reflecting laboratory mirror (“lab mirror” sample) with no visible scratches or
machine linings. The second sample was a Kapton sample, a semi-transparent film, which was
less reflective than the mirror sample. The third sample was a “polished aluminum” sample with
visible circular machine lines; the sample was highly reflective (though less so than the lab
mirror sample). The fourth sample was a solar panel consisting of a clear top layer and layer
beneath lined with conductive grid lines, measuring approximately 1-mm wide with equivalent
spacing in between. The final sample was a “metal mesh,” a 2D grid that was highly

Fig. 3 Contour plot of the beam signature in pixel coordinate space. A Gaussian filter with a σ of 1
was applied to this image.

Table 2 Table summarizing the parameters measured for the beam signature. These measure-
ments have been reported to help determine a baseline error in the data collected and the
algorithm used to fit the data. The standard deviation represents the uncertainty in these mea-
surements. Based upon the developed methodology, the beam signature is classified as “solidly
isotropic.”

Material
Mean dif
symm (%)

Min dif
symm (%)

X center
(pixels)

Y center
(pixels) Eccentricity Class

Beam sig 9.11 6.90 × 10−5 166.65� 1.00 53.86� 2.25 0.73� 0.04 Solidly isotropic

Table 3 Table summarizing the various baselines and weights for each parameter of isotropy.
STD stands for standard deviation.

Baseline
Scaled diameter

(STD)
X∕Y center

(STD)
FWHM
(STD)

Eccentricity
(value + STD)

Mean
(% difference)

Value 3.35 3.23 0.002 0.73� 0.04 9.11

Weight 0.05 0.18 and 0.18 0.05 0.18 & 0.18 0.18
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transmissive. As the samples were all illuminated in the visible, visual inspection was done on
each of the samples to predict the degree of isotropy. Table 4 lists each of the materials and the
predictions for each.

Each of the five samples was analyzed by employing the algorithm enumerated in Sec. 3.1.
Figure 4 shows a plot of the lab mirror sample in direction cosine space. The peak BRDF of this
material was on the order of 106 sr−1, indicating a highly specular material. The lab mirror com-
pares similarly eccentricity-wise to the simulated isotropic and beam signature data. As a note,
the BRDF data in Fig. 4 has been normalized by the maximum value, and the contours only
include BRDF data two orders of magnitude below the peak.

Figure 4 shows the 20 deg, 40 deg, and 60 deg measurements in direction cosine space. The
results of algorithm on this sample are summarized in Table 5. The lab mirror compares well to
the baselines. When scaled, the FWHM is the most consistent out of all of the measured materials
with a standard deviation of 0.005, just slightly higher than the baseline of 0.002. The ðx; yÞ
center coordinates also have very low standard deviations (the standard deviations are actually
both lower than the baseline standard deviation of 3.23 pixels), which points further toward
isotropy. These ðx; yÞ centers are measurements of the centers of each contour measured for
each θi contour plot in direction cosine space. The mean overall eccentricity is higher than the
baseline of 0.73, although the standard deviation is somewhat higher than the baseline of 0.04.
However, for each θi, the standard deviation remained consistent at 0.01 for the eccentricity,
which strongly indicates isotropy. The only point against this material in terms of isotropy
is the scaled diameter column, which deviated from the baseline significantly. This metric is
possibly problematic for two reasons. First, there may be issues aligning the sample properly,
where the reflected beam could be elongated as θi increases, causing the diameter to vary more
than expected. Second, the outer contour measurement relies upon the contours set by Python,
which vary somewhat as BRDF increases as θi increases. As the data are narrowed down to the
peak BRDF plus two orders of magnitude below, the cutoff for the outer contour changes with θi,
possibly accounting for the higher standard deviation for the scaled diameter. Otherwise, the
algorithm identified the material as isotropic, matching up with the previous expectation that
a smooth surface with no visible scratches or marks should reflect light isotropically.

Table 4 Table summarizing each of the materials and the predictions
for each material.

Material Prediction

Lab mirror Isotropic

Kapton Leans isotropic

Polished aluminum Anisotropic

Solar panel Highly anisotropic

Metal mesh Anisotropic

Fig. 4 Lab mirror in direction cosine space. The plot occupies a smaller region in this space as θi
increases, becoming less symmetric. Overall, the contours appear relatively symmetric (in com-
parison to the simulated data and beam signature data) for each of the plots, maintaining near
circular eccentricities. From left to right, the plots are 20 deg, 40 deg, and 60 deg, respectively.
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The polished aluminum sample varies somewhat from the lab mirror sample and the data sets
used to establish the baselines. Figure 5 shows the polished aluminum sample in direction cosine
space. The sample appears to be stretched significantly in direction cosine space, showing clear
asymmetry in this space in comparison to the lab mirror sample. Table 6 summarizes the results
captured for the polished aluminum sample.

Referring to Table 6, the polished aluminum has a higher standard deviation for all categories
than the lab mirror sample. The diameter, even when scaled, has a standard deviation that is half
of the mean. With the simulated isotropic sample, this standard deviation was 2% of the mean.
Another significant difference was in the mean symmetry, where the percentage difference in
symmetry (420.99% versus 9.39%) was nearly 45 times larger. This is likely due to the fact that
there was stronger directional skewing in the polished aluminum, which is evidenced by the high
standard deviation of eccentricity. Another point favoring anisotropy of this material is the stan-
dard deviations of the x and y centers, which are both at least six times that of the baseline
standard deviation. Thus, the polished aluminum sample rates as more anisotropic than the lab
mirror sample. This result matched predictions, as the visible machine lines on the surface caused
one to theorize that this would create anisotropic reflection.

Table 5 The lab mirror overall rates as isotropic. This is because the standard deviations reported
for the FWHM, eccentricity, and ðx; yÞ centers compare well to the baselines set by beam
signature and simulated isotropic data. The symmetry is also high here as it deviates little in
symmetry from the beam signature data, which is the baseline. Ecc. stands for eccentricity.

Material

Mean
symmetry
(% dif)

Scaled
diameter
(pixels)

Scaled
FWHM
(unitless)

X center
(pixels)

Y center
(pixels) Ecc. Class

Lab mirror 9.39
±1.60

44.27
±17.18

0.016
±0.005

134.42
±1.51

110.12
±1.60

0.81
±0.10

Isotropic

Fig. 5 Plot showing the polished aluminum sample in direction cosine space. The sample spans a
wider range in direction cosine space than the lab mirror sample and is stretched in Δβ compared
to Δα, indicating material anisotropy. The reflected beam also shrinks in size as θi increases, sim-
ilar to the lab mirror sample. From left to right, the plots are 20 deg, 40 deg, and 60 deg,
respectively.

Table 6 The polished aluminum sample is rated as more anisotropic than the lab mirror sample.
This is because for all categories, the standard deviation is significantly higher. The standard
deviation for the diameter is half that of the mean, which is significant, compared to the standard
deviation that was only 2% of the mean for the simulated isotropic material. The ðx; yÞ center (of
every contour, not just the inner and outer contours for each θi ) shifts around much more, and the
eccentricity has a high standard deviation, indicating strong directional skewing (in x ).

Material

Mean
symmetry
(% dif)

Scaled
diameter
(pixels)

Scaled
FWHM
(unitless)

X center
(pixels)

Y center
(pixels) Ecc. Class

Polished
aluminum

420.99
±195.63

112.70
±55.64

0.022
±0.006

134.85
±48.89

119.97
±20.13

0.46
±0.19

Anisotropic
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3.4 Analysis and Summary of Results

While the polished aluminum and lab mirror samples were evaluated in greater detail in this
paper, the remaining samples (kapton, solar panel, and metal mesh) were also evaluated using
the algorithm detailed in Sec. 3.1. The data and plots for these samples are omitted for brevity.
The results of this algorithm are detailed in Table 7.

Overall, the algorithm was able to successfully identify four out of five materials as being
conclusively isotropic or anisotropic. The conditions for which the algorithm will work were also
defined, as samples where the BRDF peak drops below 100 sr−1 and where (if modeled using the
Beckmann distribution) σg is >0.1 cannot be processed by this algorithm. The metal mesh sam-
ple was an example where the BRDF was too low, and the presence of the 2D diffraction grid
broke the algorithm. The algorithm works best on highly specular materials and becomes less
reliable as the material becomes more diffuse. The ðx; yÞ center and mean eccentricity criteria are
the most robust parameters of the algorithm, able to measure rotational symmetry when the
contour levels shift with θi better than the scaled diameter metric. Metrics that were flawed
or need to be adjusted were the scaled diameter metric, which should be discarded, or adjusted
to account for the alignment uncertainty, and the standard deviation of eccentricity, which should
be adjusted to be the average standard deviation for each θi. Overall, the lab mirror was the most
isotropic and similar to the beam signature and simulated data. The solar panel was the most
anisotropic material, as it produced two highly asymmetric peaks as well as a diffraction pattern,
contributing highly to the anisotropicity. The Kapton and polished aluminum samples fall in
between the lab mirror and solar panel in terms of anisotropicity. The Kapton sample, which
was predicted to lean isotropic, measured barely anisotropic (just above 10). This is possibly due
to the fact that if Kapton is not laid completely flat, the directional reflectance can change. As
stated previously, the final results are summarized in Table 7.

4 Conclusion

The developed algorithm was able to identify materials of varying isotropy, working best on
highly specular materials. Each of the materials was first classified as isotropic or anisotropic
by a qualitative assessment of the material’s surface. The first sample was the lab mirror which
was the smoothest appearing surface (and was qualitatively classified as such), and the algorithm
was able to identify it as being slightly less isotropic than the beam signature, which was the
baseline. The second sample was a Kapton film, which is a semi-transparent film, with no visible
machine lining, and some scratches. The algorithm classified it as semi-anisotropic, which is
likely due to the sample not being laid completely flat, changing the directional reflectance.
The next sample was the polished aluminum, which was more clearly anisotropic as the circular
machining lines on the sample were readily visible. As such, the algorithm classified this surface
as more anisotropic than the lab mirror sample. The fourth material was a solar panel sample,
which consisted of a top clear layer, and a darker surface underneath with a series of horizontal
grid conduction lines. The sample is clearly anisotropic due to the directionality of the grid lines
(which generated a diffraction pattern). The algorithm was able to successfully identify this

Table 7 Table summarizing the initial prediction compared to the classification done by the
algorithm.

Material Prediction Score Class

Lab mirror Isotropic 0.36 Isotropic

Kapton Leans isotropic 10.38 Anisotropic

Polished aluminum Anisotropic 13.25 Anisotropic

Solar panel Highly anisotropic 42.59 Highly anisotropic

Metal mesh Anisotropic n/a n/a
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surface as anisotropic. The final sample was the metal mesh, which was unable to be classified.
However, this sample was useful in determining the limits of the algorithm. Ultimately, it was
found using simulated data, when the BRDF peak falls below 100 sr−1, samples cannnot be
classified by the algorithm. Thus, samples with σg >0.1 (using the isotropic Beckmann distri-
bution function) are too optically rough to be classified.

Overall, the algorithm is robust for relatively specular materials, as it employs multiple
parameters to successfully analyze out-of-plane BRDF data to classify the degree of isotropy
of materials. Due to its ability to classify materials depending on their degree of isotropy, this
algorithm will improve modeling of optical scatter. For example, in light curve analysis, under-
standing that a solar panel will provide an anisotropic reflection helps not only with tracking of
space-based objects, but also in determining other characteristics of said object such as its geom-
etry. Remote sensing and scene generation applications also rely upon accurate BRDF models.
For example, in remote sensing, accurate modeling of BRDF allows users to determine proper-
ties of a scene. This algorithm is better able to classify materials than attempting to fit BRDF data
to existing models and then determining the degree of isotropy. By circumventing the step of
fitting the data to models to determine the surface characteristics, the BRDF can be more accu-
rately characterized, improving the process of extracting scene properties for remote sensing.

For future work, improvements to the robustness of some of the metrics in the algorithm
could be made, as some were more reliable indicators of isotropy than others. For example,
the mean symmetry metric was better at identifying material isotropy than the scaled diameter
metric. The algorithm could also be extended to determine the degree of isotropy present in more
diffuse materials. Another possible study could be to test the algorithm over a range of wave-
lengths. Since materials become more specular at longer wavelengths and begin to exhibit direc-
tional reflection, any accompanying anisotropy which develops spectrally could be studied.

Acknowledgments

The views expressed in this paper are those of the authors and do not necessarily reflect the
official policy or position of the United States Air Force, the U.S. Department of Defense or
the U.S. Government.

References

1. F. Nicodemus et al., “Geometrical considerations and nomenclature for reflectance,”
National Bureau of Standards Monograph 160 (1977).

2. J. T. Kajiya, “The rendering equation,” ACM SIGGRAPH 20(4), 143–150 (1986).
3. A. Ceniceros et al., “Comparison of BRDF-predicted and observed light curves of GEO

satellites,” in Proc. Adv. Maui Opt. and Space Surv. Technol. (2015).
4. K. Torrance and E. Sparrow, “Theory of off-specular reflection from roughened surfaces,”

J. Opt. Soc. Am. 57, 1105–1114 (1967).
5. S. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Proc.

Eurogr. Workshop Rendering (1998).
6. S. Butler and M. Marciniak, “Robust categorization of microfacet BRDF models to enable

flexible application-specific BRDF adaptation,” Proc. SPIE 9205, 920506 (2014).
7. B. Ewing, S. Butler, and M. Marciniak, “Improved grazing angle bidirectional reflectance

distribution function model using Rayleigh–Rice polarization factor and adaptive microfacet
distribution function,” Opt. Eng. 57(10), 105102 (2018).

8. G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Comput.
Graphics 26(2), 265 (1992).

9. R. Cook and K. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph.
1(1), 7–24 (1982).

10. R. Priest and T. Germer, “Polarimetric BRDF in the microfacet model,” in Proc. Meet.
MSS Speciality Sens. Group Passive Sens., Vol. 1, pp. 169–182 (2000).

11. D. Wellems et al., “Long wave infrared polarimetric model theory, measurements and
parameters,” J. Opt. A 8, 914–925 (2006).

Werkley et al.: Data-driven algorithm to classify the degree of isotropy in the bidirectional reflectance. . .

Optical Engineering 094108-11 September 2021 • Vol. 60(9)

https://doi.org/10.1145/15886.15902
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1117/12.2061134
https://doi.org/10.1117/1.OE.57.10.105102
https://doi.org/10.1145/142920.134078
https://doi.org/10.1145/142920.134078
https://doi.org/10.1145/357290.357293
https://doi.org/10.1088/1464-4258/8/10/014


12. J. Blinn, “Models of light reflection for computer synthesized pictures,” in Proc. 4th Annu.
Conf. Comput. Graphics and Interactive Tech. (1977).

13. M. Ashikhman and P. Shirley, “An anisotropic phong BRDF model,” J. Graph. Tools 5(2),
25–32 (2000).

14. R. Montes and C. Urena, “An overview of BRDF models,” Technical Report LSI-2012-001,
University of Grenada (2012).

15. J. Harvey, A. Krywonos, and C. Vernold, “Modified Beckmann–Kirchhoff scattering model
for rough surfaces with large incident and scattering angles,” Opt. Eng. 46, 078002 (2007).

16. S. Butler and M. Marciniak, “Comparison of microfacet BRDF model to modified
Beckmann–Kirchhoff BRDF model for rough and smooth surfaces,” Opt. Express 23(22),
29100 (2015).

17. T. V. Small, S. D. Butler, and M. A. Marciniak, “Augmenting CASI® BRDF measurement
device to measure out-of-plane scatter with CCD pixel array,” Proc. SPIE 11485, 114850B
(2020).

18. T. V. Small, S. D. Butler, and M. A. Marciniak, “Scatter coordinate mapping and out-of-
plane BRDF measurements for specular materials using an augmented CASI® measurement
system,” Proc. SPIE 11727, 117270X (2021).

19. T. V. Small, S. D. Butler, and M. A. Marciniak, “Uncertainty analysis for CCD-augmented
CASI BRDF system,” Manuscript submitted for publication (2021).

Anne W. Werkley is currently a Captain in the United States Air Force. She obtained her bach-
elor’s degree in physics from the United States Air Force Academy in 2017, and her master’s
degree in applied physics from the Air Force Institute of Technology (AFIT) in 2021. She has
previously served at Kirtland Air Force Base, New Mexico, and currently works at the Air Force
Research Laboratory, Wright–Patterson AFB, Ohio.

Samuel D. Butler is a Lieutenant Colonel in the United States Air Force and an assistant pro-
fessor at the AFIT. He received his BS degree in applied physics with a computer science empha-
sis from Brigham Young University, his MS degree in applied physics, and his PhD from AFIT.
His research interests include bidirectional scatter. He has advised seven MS and PhD students,
and published 20 technical papers. He is a member of SPIE.

Todd V. Small: Biography is not available.

Michael A. Marciniak is a professor at the AFIT. He received his BS degree in mathematics
from St. Joseph’s College, India, BSEE degree from the University of Missouri-Columbia, and
MSEE and PhD degrees from AFIT. His research interests include bidirectional scatter distri-
bution and scatterometry of optical metasurfaces. He has advised 12 PhD dissertations and 55
MS theses, and published 41 refereed and 80 technical papers. He is a senior member of SPIE.

Werkley et al.: Data-driven algorithm to classify the degree of isotropy in the bidirectional reflectance. . .

Optical Engineering 094108-12 September 2021 • Vol. 60(9)

https://doi.org/10.1080/10867651.2000.10487522
https://doi.org/10.1117/1.2752180
https://doi.org/10.1364/OE.23.029100
https://doi.org/10.1117/12.2568050
https://doi.org/10.1117/12.2597028

