The Cassiopée project aims to develop the key technologies that will be used to deploy very high-performance Adaptive Optics for future ELTs. The ultimate challenge is to detect earth-like planets and characterize the composition of their atmosphere. For this, imaging contrasts of the order of 10^9 are required, implying a leap forward in adaptive optics performance, with high density deformable mirrors (>100x100 actuators), low-noise cameras and the control of the loop at few kHz. The project brings together 2 industrial partners: First Light Imaging and ALPAO, and 2 academic partners: ONERA and LAM, who will work together to develop a new camera for WFSensing, a new deformable mirror and their implementation in an AO loop.
In this work we study the effects of the laser guide star (LGS) on the measurements of both the Shack-Hartmann wavefront sensor (SHWFS) and the Pyramid wavefront sensor (PWFS). We started by describing the LGS geometry and the general effects on each wavefront sensor. Then, we introduced a statistical analysis to predict the centroiding variance for the SHWFS when using an LGS, which we tested for read-out noise and photon noise. We found good agreement between end-to-end simulations and the predictions of the model. We found that the centroiding variance, as expected, follows closely the elongation of the LGS, with the X and Y centroiding evolving each according to the LGS geometry. For the PWFS, we used a convolutional model to compute sensitivity maps. With these maps we could observe that the size of the LGS greately decreases the sensitivity in the low frequencies. We could also obtain a better definition of the size of the LGS, which takes into account the depth of field of the telescope, which can be used to predict the sensitivity of the instrument by computing an equivalent modulation radius equivalent to the LGS size.
All the upcoming Extremely Large Telescopes (ELTs) include artificial Laser Guide Stars (LGS) to increase the sky coverage of their Adaptive Optics (AO) systems. Given the thickness of the sodium layer, where the LGS are created, these artificial stars end-up to be extended 3D objects. On a large pupil, like the ELTs, the sub-apertures of a Shack-Hartmann wavefront sensor see the LGS as an elongated object depending on their position with respect to the laser lunch telescope. As a result, a detector with a large number of pixels per sub-aperture is required to fully sample the elongated spots and minimize centroiding errors. As an alternative, we propose to explore the use of Fourier Filter Wavefront Sensors (FFWFS), such as the pyramid WFS but not only, as they could potentially offer an interesting alternative, significantly less pixel-intensive. As a first step, we developed a new method of simulating extended sources for FFWFS, which allows accelerating the simulation by a factor of over sixty times when compared to the traditional methods. Taking advantage of this, we then compare the performance of three sensors: the well-known Pyramid, the Ingot (as proposed by Ragazzoni) and a new promising candidate called the tilted Shearing interferometer. Sensitivity tests are performed for quantitative comparisons between these sensors. When comparing the sensitivity of a diffraction limited source with a 2D 1” source for a 3- and 4-sized Pyramid WFS, a 25 factor decrease was observed. This lost sensitivity is equivalent to a decrease in limiting magnitude of 6.7. Then, comparing the sensitivity of the Pyramid WFS and the Ingot WFS, the both had a similar behavior in the horizontal direction (across the elongation of the LGS), but the Pyramid had almost twice the sensitivity along the elongation, meaning that overall the Pyramid is more sensitive than the Ingot. The Tilted Shearing interferometer did not performed as expected, mainly because of diffraction and sampling effects that could be better understood in laboratory conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.