The temporal bone is a part of the lateral skull surface that contains organs responsible for hearing and balance. Mastering surgery of the temporal bone is challenging because of this complex and microscopic three-dimensional (3D) anatomy. Virtual reality (VR) surgical simulators have proven to be effective for surgical training. In this paper a fully automated method is proposed for segmenting multiple temporal-bone structures based on micro computed tomography (micro-CT) images for a realistic virtual environment. An automated segmentation pipeline is proposed based on a three-dimensional, fully convolutional neural network. The proposed balanced subsampling strategy creates balanced learning among the labels of multiple anatomical structures and reduces the class imbalance. The accuracy and speed of the proposed algorithm outperforms current manual and semi-automated segmentation techniques. The average Dice similarity scores for all temporal-bone structures was 88%. The proposed algorithm was validated on low-resolution CTs scanned by other centers with different scanner parameters than the ones used to create the algorithm. The presented fully automated segmentation algorithm creates 3D models of multiple structures of temporal-bone anatomy from micro- CT images with sufficient accuracy to be used in VR surgical training simulators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.