An algorithm is presented that can be used to obtain accurate optic axis orientation of birefringent tissue samples. A single-mode fiber (SMF)-based polarization-sensitive optical coherence tomography with a single linearly polarized incident light was used in the measurements in which the light reflected from the sample and detected by the spectrometer is linearly polarized light at 45 deg with respect to the experimental horizontal axis. By employing polarization controllers to completely specify the parameters of the fiber system, the absolute optic axis orientation could then be estimated accurately by analyzing the Mueller matrices of the fiber system and sample. The proposed algorithm has been validated in the quantification of the optic axis orientation of a quarter-wave plate. Finally, several birefringent tissue samples were imaged with this SMF-based system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.