The European Solar Telescope (EST) aims to become the most ambitious ground-based solar telescope in Europe. This paper summaries the planned architecture, software practices adopted at the moment for the development environment and future lines. EST has adopted a mix of proven software from existing telescopes that are suited to the telescope requirements with new development systems, CI/CD practices and agile methodologies among others.
The European Solar Telescope (EST) is a 4.2-metre telescope that will be equipped with a multi-conjugate adaptive optics (MCAO) system to provide a high spatial resolution over a circular field of view with 60” diameter. The EST-MCAO testbed is a downscaled demonstrator of solar MCAO with similar requirements to those defined for EST. It has been designed and developed to identify and better understand the capabilities of this system. Before MCAO implementation, different AO configurations must be first evaluated in the testbed. Single conjugate adaptive optics for point-like sources has been identified as the first step towards MCAO for the EST. This configuration is based on the use of a deformable mirror with 820 actuators and a Shack-Hartmann wavefront sensor with 33x33 subapertures. The main objective of this paper is to present the results obtained in the EST-MCAO testbed when testing different phase reconstruction algorithms and closed-loop schemes to deal with SCAO for point-like sources. Center of gravity technique was proposed for local slope computation when using point-like sources. Both zonal and modal approaches, including SVD and their regularized least-squares versions, were evaluated and tested for the reconstruction. A closed-loop strategy based on a proportional-integral controller was initially proposed. The benefits of pseudo open-loop control were also evaluated. The performance of the algorithms was tested considering different seeing conditions. Finally, a comparison based on RMS wavefront error and Strehl Ratio was conducted.
The European Solar Telescope (EST) aims to become the most ambitious ground-based solar telescope in Europe. Its roots lie in the knowledge and expertise gained from building and running previous infrastructures like, among others, the Vacuum Tower Telescope, Swedish Solar Telescope, or the GREGOR telescope. They are installed in the Canary Islands observatories, the selected EST site. Furthermore, the telescope has a novel optical design, including an adaptive secondary mirror (ASM) that allows reducing the number of optical surfaces to 6 mirrors (plus two lenses) before the instruments’ focal plane. The latter, combined with a configuration of mirrors that are located orthogonally oriented to compensate for the instrumental polarisation induced by each surface, makes EST a reference telescope in terms of throughput and polarimetric accuracy. In its main core design, EST also includes a Multi-Conjugated Adaptive Optics (MCAO) system where the ASM compensates for the ground layer turbulence. The rest of the mirrors on the optical train correct for the atmospheric turbulence at different layers of the atmosphere. The MCAO guarantees that the large theoretical spatial resolution of the 4-metre EST primary mirror is achieved over a circular FOV of 60 arcsec. Those main elements, combined with a set of instruments with capabilities for spectropolarimetry, make EST the next frontier in solar ground-based astronomy. In this contribution, we will cover the main properties and status of all the mentioned sub-systems and the following steps that will lead to the construction phase.
Radon transform, and more specifically the multiscale Discrete Radon Transform, is a valuable tool to find straight structures on images.
But the straight lines that DRT finds are those traversing completely the image, and hence DRT is unable to detect non-straight structures.
That limitation is normally adressed by evaluating Radon transform on non-overlapped subsquares of the image. In this work we will show that the initial partial transform stages of multiscale DRT contain enough information to detect non-straight edges.
By stopping on initial stages of an already linearithmic transform that can be executed on integer arithmethics, the proposed method is found to be much faster than its alternatives.
We will show its ability to process images at video acquisition rate on mobile phones.
Points of view generation allows to create virtual views between two or more cameras observing a scene. This field receives attention from multimedia markets, because sufficiently realistic points of view generation should allow to navigate freely between otherwise fixed points of observation. The new views must be interpolated between sampled data, aided by geometrical information relating real cameras poses, objects in the scene and desired point of view. Normally there are several steps involved, globally known as Structure from Motion (SfM) method. Our study focuses on the last stage; image interpolation based on the disparities between known cameras. In this paper, a new method is proposed that uses depth maps generated by a single camera, named SEBI, allowing a more efficient filling in presence of occlusions. Occlusions are considered during interpolation, creating an occlusion-map and an uncertainty-map using the depth information that SEBI cameras provide.
In this work we have presented a brief insight into the capabilities of multilayer displays as to selectively display information in relation to the observers. We labeled the views of a light-field as blocked and non-blocked, and then a predefined text was assigned accordingly, modifying it to achieve a privacy criterion in the blocked case. Two ways to define the private views were presented. An evaluation of the output for both techniques was carried over in simulation, in both the spatial and frequency domain. Results showed that privacy was achievable and that each technique had an optimal operation point when taking into account the time-multiplexing capabilities of the multilayer display. Also, a trade-off between the quality of the blocked and non-blocked views was found.
KEYWORDS: 3D displays, LCDs, Lanthanum, Optical engineering, Reconstruction algorithms, Signal to noise ratio, Multiplexing, 3D image processing, Translucency, Display technology
Tensor display is an option in glasses-free three-dimensional (3-D) display technology. An initial solution has to be set to decompose the light-field information to be represented by the system. We have analyzed the impact of the initial guess on the multiplicative update rules in terms of peak signal-to-noise ratio, and proposed a method based on depth map estimation from an input light field. Results from simulations were obtained and compared with previous literature. In our sample, the initial values used have a large influence on results and convergence to a local minimum. The quality of the output stabilizes after a certain number of iterations, suggesting that a limit on such numbers should be imposed. We show that the proposed methods outperform the pre-existing ones.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.