
Chapter 14
Neurophysical Model by
Barten and Its Development

According to the Barten model, the perceived foveal image is corrupted
by internal noise caused by statistical fluctuations, both in the number
of photons that trigger photoreceptor excitation and in the signal
transport from photoreceptors to the brain. While the former effect is
easily identified with the photon shot noise intrinsic to any luminous
flux, the latter effect is related to the process of subdivision and
recombination of photocurrents generated by each individual cone. These
photocurrents create a parallel stream of information that is conveyed
through the complex mesh of neural cells (horizontal, bipolar, amacrine,
and ganglion) that form the retina–brain connection.1 Thus, fluctuations in
the electrical/biochemical transport through such parallel pathways result
in small differences in the image elements arriving at the brain (neural
noise).

The overall effect of noise establishes a threshold level below which an
image cannot be perceived or distinguished without a high probability of
error. The process can be compared to the common experience of image
degradation induced by fog in open air, relative to a clear atmosphere, or
by flicker in a television image. The disturbance (fog or flicker) plays the
role of noise externally added to an otherwise sharp scene, and limits the
resolving capability of our visual perception.

The Barten model is based on the following simple relationship:

m(ψ) · |MTFT (ψ)| = SNR · NT (ψ), (14.1)

which states that, at the perception threshold, modulation m(ψ) at angular
spatial frequency ψ of the object being observed, filtered by the total
MTF (MTFT ) of the eye–brain system, must overcome the total noise
level NT (ψ) at the same frequency by a suitable factor, represented by
the signal-to-noise ratio (SNR). In general, the object imaged by the
eye can be any pattern of structural and chromatic complexity; however,
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it is mathematically convenient to refer to black-and-white sinusoidal
luminance gratings of variable spatial frequency that form the base for
spectral decomposition of any 2D object. In this case, modulation m(ψ)—
also termed Michelson contrast c(ψ)—is defined as

m(ψ) = c(ψ) =
L(ψ)max − L(ψ)min

L(ψ)max + L(ψ)min
, (14.2)

which is the amplitude of the sinusoidal variation of luminance(
L(ψ)max−L(ψ)min

2

)
divided by average luminance

(
L(ψ)max+L(ψ)min

2

)
.

In Eq. (14.1), MTFT appears in modulus form (even if unnecessary by
definition) to stress that possible sign reversal must not be included, as all
of the other parameters in the equation are positively defined quantities.

By choosing sinusoidal gratings, modulation m(ψ) of Eq. (14.1) takes
the meaning of threshold modulation function TMF(ψ), that is, the smallest
modulation of a sinusoidal luminance grating that can be recognized by
an observer (a physical parameter that is easily quantified in human eyes
through the usual measurement of CS at some fixed spatial frequencies).

Figure 14.1 shows a representation of the effect of noise at various
values of SNR (∞, 5, 3, and 2) on the visibility of sinusoidal gratings for
a single spatial frequency and various contrast levels (c = 1; 0.3; and 0.1).
In each frame of Fig. 14.1, the scale is such that the entire frame linear size
corresponds to 100 arcmin, and the pixel size (visible in noisy patterns) is
equivalent to the cone spacing in the fovea center (about 0.5 arcmin). The
spatial frequency represented in Fig. 14.1 thus corresponds to 12 cpd.

By adopting convenient expressions for MTFT (ψ) and NT (ψ)
(illustrated in the following), Barten was able to solve Eq. (14.1) for
m(ψ) ≡ TMF(ψ), and to derive an adequate formula for CSF(ψ), the
reciprocal function of TMF(ψ):

CSF(ψ) ≡
1

TMF(ψ)
=
|MTFT (ψ)|

SNR · NT (ψ)
, (14.3)

where all functions are implicitly assumed to also depend on wavelength λ.
By means of Eq. (14.3), Barten successfully fit a number of experimental
data series of CS taken from the literature.

14.1 Total MTF

In the Barten model outlined in Eq. (14.3), MTFT refers to the overall
spatial filtering experienced by the visual signal in the complete transport
chain through the eye, along the optical nerve up to the brain. It is
made up of three contributions: optical component MTFO, pertinent to
the refractive media of the eye; retinal component MTFR, describing the
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Figure 14.1 Visualization of the effect of noise on the detectability of sinusoidal
gratings, for three values of contrast (c = 1; 0.3; and 0.1), and four levels of SNR
(SNR → ∞; 5; 3; and 2). Assuming that the pixel size in each frame corresponds
to the cone spacing in the fovea (≈0.4 arcmin), the sinusoidal bars are 1.5 deg
long and spatial frequency is 12 cpd.
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discrete sampling structure of the fovea; and neural component MTFN ,
characterizing the filtering action suffered by the visual signal in its
transport along neurons from photoreceptors to the brain. Thus, MTFT is
given by

MTFT (ψ) = MTFO(ψ) ·MTFR(ψ) ·MTFN(ψ). (14.4)

The retinal and neural components are assumed to be wavelength
independent.

14.1.1 Optical MTF

In his analysis of CS data, Barten adopted a simple heuristic formula
to represent MTFO of the ocular refractive media: MT FO(ψ) =

e−2π2[σ2
0+(C·Dent)2]ψ2

, given by a Gaussian function with a line width
inversely dependent on pupil size, to account for spherical and chromatic
aberrations. In this expression, σ0 and C are constant parameters, and Dent
is the size of the entrance pupil. Despite the simplicity of the model,
the visual agreement of the data fits he obtained was remarkably good.
MTF line width σ0 was left as a fitting parameter, to be freely adjusted
for maximum adherence of model to data. However, a better solution is
represented by use of expressions for MTFO calculated with a physical
optics approach. In the present context, MTFO(ψ) is given by the numerical
results obtained for the CAGE eye model and described in Part IB. The
resulting shape of MTFO then depends only on the size of entrance pupil
Dent, the spectral composition of the visual stimulus, and amount of
defocus.

14.1.2 Retinal MTF

The sampling action provided by foveal cones on the luminance signal
falling onto the retina alters the signal by transforming its spatial
distribution from continuous to step-wise, thus introducing a limit to visual
resolution due to the cone mosaic.

Barten did not specify a formula for MTFR, but instead included it
into his heuristic MTFO. In the present case, a suitable expression for the
sampling function can be easily devised. Assume for simplicity that the
incident foveal irradiance is actually the line spread function LSF(θ), with
θ being the angular coordinate, so that its Fourier transform directly results
in MTFO. Suppose further that foveal cones are regularly distributed in a
2D arrangement, each one having angular width W and spacing S (center-
to-center angular distance). Finally, assume that in the sampling process,
foveal irradiance is spatially integrated across the cone aperture and is
lost in the dead zone between adjacent photoreceptors. Mathematically,
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the sampled LSF can be written as2

LSFR(θ) = Σ(θ) ·
∑

k

δk(θ − kS ), (14.5)

where δ(θ) is Dirac delta function, and the sampling function Σ(θ) is given
by

Σ(θ) =
1
W

∫ ∞

−∞

LSF(u) · rect
(
θ − u
W/2

)
du

=
1
W

conv
{

LSF(θ), rect
(
θ

W/2

)}
. (14.6)

In this formula, rect
(
θ

W/2

)
defines the finite unitary impulse function of

width W (see Appendix A), and conv represents the convolution operator.
In this way, Σ(θ) is continuously defined on the θ axis, while LSFR(θ) is
defined only at the center of each photoreceptor (or pixel).

The corresponding MTFR(θ) after sampling can thus be evaluated as3

MTFR(ψ) = FT {LSFR(θ)} =
∑

k

MTF
(
ψ −

k
S

)
·

∣∣∣∣∣∣sinc
[
πW

(
ψ −

k
S

)]∣∣∣∣∣∣ .
(14.7)

As a consequence of sampling, the original double-sided spectrum
MTF(ψ) is attenuated by the sinc (·) function (FT of the active sampling
window of size W), and replicated at frequency intervals k/S (where 1/S
is the sampling or Nyquist angular frequency). Given that the domain
of MTF(ψ) is [−ψ0,ψ0], with ψ0 = Dex

λ
, (Dex being the size of the exit

pupil), then aliasing, that is, the overlap of adjacent spectral orders, occurs
whenever 2ψ0 >

1
S that is, Dex >

λ

2S .
Numerical values for S and W can be obtained from the literature.

The classical work by Curcio and Allen4 provides a mean value for
the maximum density of foveal cones of 210,000 mm−2 (range: 120,000
to 324,000), confirmed by a recent measurement of 199,200 mm−2

(Ref. 5). By adopting density value nC = 200,000 mm−2—with a retinal
magnification factor given by γ = 4.96 µm/arcmin (see Section 10.1)—
the cone spacing for a square cell arrangement becomes S = 103

γ
√

nC
�

0.45 arcmin. For a pattern of hexagonal cells, the separation between

adjacent cell rows is given by S = 103

γ

√ √
3

2nC
� 0.42 arcmin. Assuming

30% for the fraction of dead space between adjacent cones yields W =

0.35 arcmin. By comparing Eqs. (14.4) and (14.7), the retinal MTFR of
Eq. (14.4) can be set equal (for order k = 0) to MTFR(ψ) = |sinc(πWψ)|.


