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Chapter 1  
The Basics 
 
Until recently, there was only one application for ray tracing, the modeling and 
analysis of an optical system. However, today’s students have a different 
application in mind. They think that they are going to be taught how to use 
powerful computers to generate realistic scenes like those that animation studios 
use to create movies (see Fig. 1.1). 

Both applications, optical system modeling and realistic scene generation, 
simulate rays traveling through space to create images. Some of these images may 
be very simple (such as a point or a line), while those in computer-generated 
images (CGI) are extremely complex.  

In the latter case, thousands of rays are traced to build the image of a scene. 
To reduce the time to compute the scene, only those rays that will reach the eye 
are traced. The easiest way to do this is to trace the rays in reverse. Starting at an 
eye, or a camera sensor, a ray is traced from a point on the sensor, through the lens, 
and out to the scene, where its intersection with the surfaces defined by the 
computer model of the scene reflect, refract, and scatter the light in the scene.  

The CGI procedure is designed to use as few rays as possible so that the 
images can be rapidly generated. Similarly, system analysis ray tracing tries to use 
the fewest rays possible to determine how well an optical system, such as that 
shown in Fig. 1.2, will perform if it were built. In this case, the scene doesn’t 
change. Instead, the same rays are traced through many different variations of an 
optical system whose dimensions and other variables are changed to find the best 
performance under specific conditions. This operation is called optimization, and 
a substantial part of this text describes and demonstrates how it works. 

 

 

Figure 1.1 “Bosque Morning,” by John Fowler. Reprinted with permission from 
Creative Commons. 
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Figure 1.2 Ray trace of a double Gauss lens using an optical design program. 

 
Although computers provide us with enormous power to solve complex 

and sophisticated problems, they represent our biggest concern in teaching optical 
design. Once you sit down in front of a computer, the rest of the world can 
disappear, and time can pass quickly. Useful ideas and concepts fade when you are 
typing and looking at numbers that are supposed to tell you how well things are 
going. The physics can get lost in front of a keyboard; basic insights can disappear 
inside the workings of the design program.  

To resist this tendency, we will introduce certain basic concepts to help 
you visualize what is going on in a design or that can provide insight and guidance 
toward improving its performance. Some of these concepts are simple, but they are 
just as useful as the ability to run a series of advanced analyses on a system.  

1.1 Ray Calculations 

We use computers that perform complex calculations and, for the most part, do not 
wonder what the calculations are or which ones are being used. Until a ridiculous 
result or a bug presents itself, we’re fine with the way things are going.  

In the case of ray tracing, the equations are so simple and their 
approximations are sometimes so useful that it would be a shame to ignore them. 
First, we need to set up a coordinate system that will be used from here on out—
even when we resort to computing. The coordinates are established by defining the 
z axis as the axis of symmetry of a lens (Fig. 1.3) or other optical component, such 
as a spherical mirror. Light from an object is directed into the optical system in a 
positive direction. Using the convention that light initially travels from left to right 
(see box, “The Ways of Rays”), the positive z axis points to the right. In the right-
handed coordinate system used in optics, the x and y axes are perpendicular to the 
z axis. They are oriented with the positive y axis pointing up and the z axis to the 
right, and the x axis points away from the y-z plane. (If you curl the fingers of your 
right hand so that they point from the x axis to the y axis, your thumb will point 
along the z axis). Whew!  
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Figure 1.3 Right-handed coordinate system used in ray tracing. 
 

The Ways of Rays 

There are many mathematical and graphic conventions in optics and optical 
engineering, but one that is unstated, yet almost universal, is that light rays in 
an optical design or ray trace always travel from left to right, beginning at the 
object plane or source and entering the initial surface of the optical system. What 
happens after that is, of course, dependent on that particular system. Still, this 
convention means that you should expect to read an optical system as you would 
a sentence. Anyone who draws an optical system with the source on the right 
side of the design is, to our mind, guilty of a violation of optics grammar and 
should be told so. 

 
The index of refraction n is a characteristic of a transparent medium (gas, 

liquid, or solid). When light travels through a vacuum, it travels at a velocity of     
3  108 meters per second (m/s). It is denoted by a special symbol c. In any other 
medium, the interaction of the light with its atoms, molecules, or structures causes 
the light to slow down to a speed of v. To account for the velocity changes, each 
medium has a refractive index, which is the ratio of the speed of light divided by 
its speed in the medium:  

 n = c/v. (1.1)  

Even air, the medium between lenses and mirrors in most optical systems, slows 
the progress of light (it has an index of 1.000273 at standard room temperature and 
pressure). These indices are known as absolute indices. Because air (with an index 
very close to 1.0) is a medium present in nearly every lens design, it is standard 
practice in optical design software to redefine the materials in terms of their 
relative index, where the speed of light used in Eq. (1.1) is the speed of light in air 
(not vacuum), making the refractive index of air exactly equal to one and 
simplifying the material entry of the optical system. All standard glass catalogs 
also have indices expressed relative to this unit index of air. 
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Figure 1.4 Refraction of light at an interface. 

1.1.1 Law of refraction: Snell’s law 

The laws of ray optics can be expressed in three equations. The first law, known 
as Snell’s law or the law of refraction, expresses the amount by which a light ray 
is bent when it crosses the interface between media of different refractive indices 
(Fig. 1.4). In the case of a plane surface, there is no unique optical axis as there is 
in the case of a lens. Yet, to be able to specify the quantities that describe the rays 
and the optics, a local coordinate system needs to be established. In this case, we 
use an incident ray to locate the origin. Starting at the interface that separates two 
media whose refractive indices are n and n', the origin of the coordinate system is 
located at the point where the incident ray intersects the interface. The z axis is 
defined as the normal (perpendicular) to the interface at the origin, as shown in 
Fig. 1.4. See the box, “Sign Conventions,” for a summary of definitions for optical 
systems. 

If the angle of the incident ray to the z axis is i, then the angle of refraction 
i' is given by the relation 

 n' sin i' = n sin i. (1.2)  

In Fig. 1.4, the signs of the angles i and i' are both positive. The sign convention is 
that the angle between a ray and a reference axis is positive if the rotation of the 
ray into the axis is clockwise. (For a horizontal reference axis, rays progressing 
upward are positive, and those going downward are negative.) Note that the 
equation is not solved for i' but  expressed as sine-index products, which helps to 
emphasize the fact that this product is constant across index boundaries, and in the 
case of parallel plate of material, it can simplify some of the calculations (Ex. 1.1). 
 
Exercise 1.1 Parallel slab  
A ray enters a 1-cm-thick pane of glass 
in air (n = 1) at an angle of 30° to the 
surface normal. Its surfaces are parallel 
to each other. If the refractive index of 
the pane is 1.666, what is the exiting 
angle? The answers are given at the end 
of the chapter. (Hint: Examine the sine-
index product at each interface.) 
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(a) (b) 

Figure 1.5 Reflection of light off a mirror. 

1.1.2 Law of reflection 

The second law, the law of reflection, states that the angle of reflection equals the 
angle of incidence. But how is this expressed algebraically? We can treat it as a 
special case of Snell’s law, provided we establish another convention. One of the 
problems with ray tracing is that when a ray is reflected, its general direction must 
be reconciled with the coordinate system that we initially established with the z 
axis pointing in the direction of the light propagation. And it also has to be 
consistent with our angle convention (positive, if the ray rotates clockwise into the 
axis).   

In Fig. 1.5(a), the refractive index in the space in front of the mirror n' 
should be the same for the reflected ray as it is for the incident ray. But the angles 
i and i' should have opposite signs (i' = –i). If we insert these values into the 
equation for Snell’s law (Eq. 1.2), we obtain 

 
 n' sin(–i) = n sin i,   

or 

 –n' sin (i) = n sin i.   

Therefore,   
 n' = –n.  

The only time that this is true is when i = 0. It would appear that we couldn’t use 
Snell’s law universally and would have to set up a special case for reflections, 
which would make ray tracing more difficult because each time the ray 
encountered a reflecting surface, some additional branching would have to be 
added. One way that these computations can be completely consistent is if the 
refractive index changed sign after each reflection. So, n' = –n. When this is 
inserted into the equation for Snell’s law, it is satisfied (Fig. 1.5(b)). In nature, the 
refractive index of optical materials is always positive (exceptions only occur in 
very exotic situations), but in ray tracing, the signed refractive index is used as a 
geometrical bookkeeping trick that reflects (pun intended!) the physics of light. 
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Sign Conventions 

Optical axis 
The optical axis, the z axis, is the axis of 
symmetry of the optical system. The positive 
direction points along the direction of the initial 
propagation of light (to the right).  
 
Coordinate origin 
The coordinate system for ray tracing is right-handed. Its origin is located at the 
intersection of a surface and the optical axis. As a ray is propagated to the next 
surface, a new origin is established there.
  
Distances 
The distance to the next surface (thickness) is positive if it lies along the initial 
direction of light propagation (to the right) and negative if it is directed against 
the initial ray propagation (to the left). The radius of curvature of a surface is 
positive if the center of curvature is located to the right of the surface vertex and 
negative if it is located to the left of the surface vertex. 

      
 
Rays 
The height of a ray above the axis is positive; 
below the axis is negative. The angle of the ray 
with respect to a reference line is positive if the 
rotation of the ray into the reference is clockwise 
and negative if the rotation is counterclockwise. 
This is true for angles of incidence and refraction 
(i, i') measured relative to the surface normal and 
for ray angles (u, u') measured relative to the 
optical axis. 
 
 
Reflections 
All sign conventions remain the same except that the sign 
of the refractive index is changed after each reflection.  
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1.1.3 The transfer equation 

The third and simplest of the laws is that in a medium of constant refractive index, 
light travels in a straight line. If a ray is y above the optical axis and at an angle u' 
to the optical axis (Fig. 1.6), after traveling a distance t' it will be a distance y' 
above the axis, where  

 y' = y + t' tan u'. (1.3) 

Equation (1.3) is called the transfer equation, and in conjunction with Snell’s law 
it is all we need to trace rays through a complex optical system. 

Exercise 1.2 Transfer equation 
A ray is traveling at a height of 10 mm above the optical axis with a slope 
angle of +0.2 radians. If it travels 50 mm farther along the optical axis, what 
will be its new height? When its height is 75 mm, how far will it have traveled 
from the point where it started at a height of 10 mm? 

As an example of how is this done, let’s look at a ray striking a spherical 
surface with a radius of curvature R, as shown in Fig. 1.7. We start with a ray at an 
angle u to the optical axis. It is incident on the spherical surface at a height y and 
an angle of incidence i with respect to the surface normal, which is an extension of 
the radius of the spherical surface. The ray angle after refraction i' can be calculated 
using Snell’s law. Although it is possible to compute the direction of the ray after 
refraction using trigonometry, the analysis becomes much simpler for small ray 
 

 
Figure 1.6 Transfer of a ray through a distance t'. 

 

 

Figure 1.7 Ray trace at a spherical surface. 
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Figure 1.8 Demonstration of the small-angle approximation of trigonometric 
functions close to the origin. 
 
angles in the paraxial region (close to the axis) where the sine and tangent of an 
angle are approximately equal to the angle in radians. As you can see in Fig. 1.8, 
the three functions (plotted as a function of the angle u) are coincident for a small 
range of angles about the origin, so that we can replace sin i with its angle i. Snell’s 
law (Eq. (1.2)) is then reduced to 

 ,n i ni    (1.4) 

and the transfer equation (Eq. (1.3)) is expressed as the paraxial transfer equation, 

 .y y t u     (1.5) 

To continue the ray trace, the angle that the ray makes with the optical axis 
after refraction u' must be determined. Because the refraction angles depend on 
where the ray hits the surface, Eq. (1.4) can be rewritten in terms of the ray angles 
with respect to the optical axis u and u' as 

 .n u nu y     (1.6) 

This is called the paraxial refraction equation. The term  is the optical power of 
the surface and is related to the difference in the refractive indices across the 
surface and its radius of curvature R or its curvature c (the reciprocal of R) as 

 ( ) .
n n

n n c
R


      (1.7) 

Note that for a flat surface (R  ∞) the optical power is zero and the paraxial 
refraction equation reduces to Snell’s law because u = i and u' = i'.  Given the initial 
ray angle u, ray height y, and the power of the surface , one can calculate the ray 
angle on the other side of the surface u' after refraction at the surface. This 
information is then fed into the paraxial transfer equation to determine the ray 
height at a surface a distance t' away. 
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Exercise 1.3 Small-angle approximation  
At what angles, expressed in both radians and degrees, are the values of the 
sin(u) and tan(u) functions within 1% of their angles? 

If there were more than one surface in the lens system, given the ray height 
y' and ray angle at the second surface u', the paraxial refraction equation can be 
used again to calculate the ray angle after refraction at the second surface followed 
by a transfer to the next surface, and so on until the ray is traced through all of the 
surfaces in the optical system. 

If that’s all there is to ray tracing, what’s the big deal? For one thing, not 
all ray angles are small, and not all surfaces are spherical.  Therefore, the 
computation needed to rapidly trace a ray through multiple surfaces with a high 
degree of accuracy requires well-written software running on a high-performance 
computer. Furthermore, a ray tracing program allows us to improve a design by 
modifying its curvatures, thicknesses, and glass types. 

1.2 Lenses  

Although optical systems may be composed of numerous lenses, mirrors, filters, 
and other components, we start with a single lens. It can be used to define and 
illustrate many concepts that will be applied to more elaborate systems. We begin 
by using the terms defined in the box, “Anatomy of a Simple Lens,” to describe 
the passage of light rays though the lens. For example, the optical axis, the axis of 
symmetry through the center of a lens, provides a line of reference for our simple 
optical system, a single lens. 

Light from a faraway source in front of the lens, made up of rays parallel 
to the optical axis, will be focused to a point behind the lens on the optical axis, 
the focal point F' by a positive lens (Fig. 1.9(a)), or will appear to diverge from a 
point in front of the lens on the optical axis from a focal point F by a negative lens 
(Fig. 1.9(b)). (For a discussion of what constitutes a faraway source and how it is 
treated in optical design, see the box, “Far Away,” at the end of Section 2.1). This 
is the focal point of the lens. The distance between the lens and its focal point f is 
the focal length of the lens. 

 

 
 (a) (b) 

Figure 1.9 Parallel rays (a) focused by a positive lens and (b) diverged by a 
negative lens. 
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Anatomy of a Simple Lens 

Most everyone knows what a lens is. Some of us know how it functions. But 
few people can describe one in any detail. To be able to understand how it 
works and to be able to modify its construction, a single lens should be 
described so that its performance and ailments (aberrations) can be diagnosed. 
That being the case, we provide, herewith, the anatomy of a single lens. It will 
provide a glossary of terms that will be used for the rest of the text. 
 

 

 
A simple lens consists of a piece of glass shaped by two opposing 

surfaces, each being a section of a sphere. The shape of the first surface is 
defined by its radius of curvature R1, which is the radius of the sphere whose 
center of curvature is located at z1. The second surface has a radius of 
curvature R2 with a center of curvature at z2. 

A line through the two centers of curvature defines the optical axis of 
the lens, and the separation between the two surfaces along the optical axis is 
the center thickness of the lens t. The point where the optical axis intersects 
a surface is the vertex for that surface. The two vertices are labeled V1 and V2 
in the above figure. 

The size of the lens is specified by its semi-diameter, shown in the 
right figure. To avoid any confusion with the radius of curvature, we will use 
the term “semi-diameter” for the lens rather than the radius. Once the semi-
diameter is given, the edge thickness of the lens is determined, as can be seen 
in the left figure.  

Not all lens surfaces are spherical. Some are parts of conic surfaces or 
more elaborate geometrical functions. However, the radius of curvature 
measured at the vertex of the surface provides a base radius of curvature. 
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In practice, the focal length of the lens f is not as well defined as it is shown 
in Fig. 1.9. Although the focal point would seem easy to locate (not so, as we’ll 
see later), the plane that represents the lens cannot be defined without further 
analysis. But for an initial design or for a preliminary layout, it is easiest to use the 
thin lens approximation. In this case, the lens is treated as a thin optical 
component located on a plane in the middle of the actual lens. One definition of a 
thin lens is a lens whose thickness is smaller (say, one-tenth) than its focal length. 

In Section 1.1, we discussed the optical power of a surface (Eq. (1.7)). We 
expect that each of the surfaces in a lens to contribute to the overall power of the 
lens. Because we are ignoring its thickness, the power of the thin lens  is simply 
the sum of the surface powers (Eq. (1.7)), or 

 
     1 2

1 2 1 2

1 1 1 1
1 .

n n
n

R R R R
  

   
       

 
 (1.8) 

The result is that the power of a thin lens is dependent only on the radii of curvature 
of its two surfaces (R1 and R2) and its refractive index n. These variables are shown 
in Fig. 1.10. The subscripts of the radii of curvature are assigned to the variables 
in order from left to right, the direction of the light entering the system or, in this 
case, lens. Each of these is a directed distance and is depicted as an arrow in Fig. 
1.10. The radius of curvature R1 is a positive quantity because its center of 
curvature z1 is to the right of the first lens surface. R2 is negative because its center 
of curvature z2 is to the left of the second surface. 

The optical power of a lens is the reciprocal of the lens focal length               
 = 1/f. (This definition is valid unless the object or image space medium is not air. 
Special cases, such as a lens immersed in a liquid or a reflective optical element, 
will be treated later.) The unit of power is the diopter, which is the reciprocal of 
the focal length when it is expressed in meters. Thus, a +100-mm- (or 0.1-m-) 
focal-length lens has a power of 10 diopters. The result is that the focal length of a 
thin lens can also be calculated from the three lens variables using the lensmaker’s 
formula: 
 

  
1 2

1 1 1
1n

f R R

 
   

 
. (1.9) 

 

 

Figure 1.10 Variables that determine the focal length of a thin lens. 
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Figure 1.11 Variables for a plano-concave lens. 
 
By substituting curvatures c for the reciprocal of the radii of curvature, the formula 
can be written compactly as 

 1 2( 1)( ) ( 1) ,n c c n       (1.10) 

where ß, the bending factor, is the difference of the curvatures c1 – c2. This form 
of the lensmaker’s formula will be useful when we discuss the correction of color 
error (chromatic aberration) in a lens in Chapter 9. 

For example, we can use the lensmaker’s formula to calculate the focal 
length of the thin lens shown in Fig. 1.10 given that the refractive index of the lens 
is 1.5, the radius of curvature of the first surface is +150 mm, and the radius of 
curvature of the second surface is –100 mm. By inserting n = 1.5, R1 = 150, and   
R2 = –100 into the lensmaker’s formula, we get 

  1 1 1 1 0.0166 1
0.5 0.0066 0.01 .

150 100 2 2 120f
         

 

According to the lensmaker’s formula, the focal length of the lens is 120 mm. 
In a second example of a plano-concave lens (Fig. 1.11), the first surface 

is flat. The radius of curvature of a flat surface is infinite, and the term 1/R1 in the 
lensmaker’s formula equals zero. The center of curvature of the concave surface is 
to the right of the surface, so the radius of curvature is positive. If the refractive 
index of the lens is also 1.5, and the radius of curvature of the concave surface is 
+100 mm, then the focal length of this lens is 

 1 1 1 0.01 1
0.5 0 0.01 .

100 2 2 200f

         
 

This is a negative lens with a focal length of –200 mm. Note that the thickness of 
a negative lens is smaller at its center than at its edges compared to the positive 
lens in Fig. 1.10, where the opposite is true. 

1.3 Imaging 

Besides focusing parallel light to a point, a lens can collect light from many points 
on an object and focus these points on a plane to create an image of that object 
(Fig. 1.12).  

 



The Basics 13 

 
Figure 1.12 Imaging of an object with ray bundles. 

 
 In terms of imaging, the thin lens equation is the corresponding equation 
to the lensmaker’s formula:  

 
1 1 1

.
t f t
 


 (1.11) 

It can be used to find the location of the image a distance t from the lens, for a lens 
of focal length f and an object located a distance t from the lens. For example, 
consider an object located 150 mm in front of a 100-mm-focal-length lens. By 
using Eq. (1.11), we insert the focal length and object distance:  

1 1 1 1 1 3 2 1
,

100 ( 150) 100 150 300 300 300t
      
 

 

and the result is that the object will be imaged at a distance 300 mm beyond the 
lens. Note that the object distance was entered as a negative quantity (–150) 
because of our sign convention (the object is to left of the lens). This may be 
different from the relation that you learned in sophomore physics. There, the 
equation was given as 

 
1 1 1

,
o i f
   (1.12) 

where o was the object distance, and i was the image distance. The discrepancy 
between these two equations is due to the object distance in the second equation o 
is considered a positive quantity, whereas the object distance t is a negative 
quantity because the origin of the coordinate system is located at the lens, as shown 
in Fig. 1.13. 

 

Figure 1.13 Imaging of an object by a lens of focal length f. 
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Figure 1.14 Magnification of a lens. 

 
Now that we know how to find the location of the image, it would be nice 

to be able to determine its size. To start, we examine the point in the object plane 
that is at the top of the arrow and represents an object point at a distance h from 
the optical axis. The bundle of rays emitted from that point, traced in Fig. 1.12, is 
focused by the lens to a point on the image plane at a point h' from the optical axis. 
We can pick a specific ray from this bundle, one through the center of the lens that 
is undeviated by the lens (called a center ray), as shown in Fig. 1.14, and trace it 
to the image plane.  

The two triangles in the figure have equal interior angles u = u', so the 
tangents of these angles are equal: 

 tan tan .
h h

u u
t t


  


 

The magnification of the optical system m is the ratio of the image height h' divided 
by the object height h. Solving for this ratio h'/h produces the law of magnification: 
 

 .
h t

m
h t

 
   (1.13) 

For our example, the magnification m = 200 mm / –150 mm, or –4/3X 
magnification. The negative sign indicates that the image is inverted in relation to 
the object. 

Although Eq. (1.13) is a simple equation, it establishes significant limits 
in the design of an optical system. The simplest application of the law shows that 
it is impossible to locate a magnified real image close to an imaging lens.  

The definition of a center ray whose direction is undeviated by the lens is 
based on the assumption that the lens, however thick it may be drawn in a figure, 
is considered a thin lens whose front and back surfaces nearly touch. Because the 
points where the surfaces will nearly touch are on the optical axis, a ray aimed at 
that point will necessarily pass through the center of the lens. In that region, the 
tangents to the two surfaces are parallel to each other, so the center of the lens 
appears to be a parallel slab, and a ray entering the slab at some angle will emerge 
on the other side at the same angle, i.e., the ray is undeviated (see Ex. 1.1). 
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Exercise 1.4 Thin lens equation and magnification 
In Section 1.3, the object was located 150 mm in front of the 100-mm-focal-
length thin lens. Where will the image be located if the object is relocated to a 
point 200 mm in front of the lens? What will be the new magnification? 

1.4 Types of Images 

When an object is located outside the focal point of a positive lens, as illustrated 
in Fig. 1.15(a), the rays from each object point converge to its corresponding image 
point resulting in a real image of the object. If a white surface is placed behind the 
lens in the image plane, a real image can be seen there, just as we see an image 
projected on a screen in a movie theater. There are other optical arrangements 
where the lens doesn’t focus light rays from an object. Instead, the rays from an 
object point diverge as they emerge from the lens. For example, when an object is 
located inside the front focal point of a positive lens, the rays diverge, as shown in 
Fig. 1.15(b). The image plane is located by tracing the diverging rays backwards 
to where they meet at a point. In this case, a screen located behind the lens will not 
show any image. You need to use another optical system, such as the eye, to see 
the image. This type of image is called a virtual image. In Fig. 1.15(b), the lens 
acts as a magnifier, displaying a larger image h' than the original object h. In 
comparing the lens systems in Fig. 1.15, we see that for a positive lens the real 
image space is on the image side of the lens (positive value for t'), whereas the 
virtual image space is on the object side of the lens (negative value for t'), which 
means that the sign of the image distance indicates whether the image produced by 
the lens is real (positive t) or virtual (negative t). 

All of the quantities that have been defined and discussed are signed 
quantities. In the case shown in Fig. 1.13, the image height is inverted relative to 
the object, and the sign of the ratio of the heights (h'/h) is negative, as is m. The 
ratio of the distances gives the correct sign of the magnification because t' is 
positive and t is negative, as we noted earlier (Eq. (1.13)).  

This introduction to ray tracing has established some of the basic concepts 
needed to understand and analyze optical systems. But before showing you how to 
enter a system into a ray tracing program, in the next chapter we want describe a 
graphic technique that we call ray sketching that can give you a feel for a system 
before any keys are pressed and routines are run. 

 

 
 (a) (b) 

Figure 1.15 Types of images: (a) real and (b) virtual (t is a negative quantity). 



16 Chapter 1 

 

Exercises 

Exercise 1.5 Equiconvex lens 
n = 1.5 units; t = –400 units; R1 = +100 and R2 = –100. Determine its focal length 
f, the location of the image t', and the magnification of the system m, and indicate 
if the resulting image is R (real) or V (virtual). Sketch the shape of the lens. 

Exercise 1.6 Biconvex lens 
n = 1.4 units; t = –200 units; R1 = +200 and R2 = –100. Determine its focal length 
f, the location of the image t', and the magnification of the system m, and indicate 
if the resulting image is R (real) or V (virtual). Sketch the shape of the lens. 

Exercise 1.7 Positive meniscus lens 
f = 266.66 units; t = –200 units; R1 = +100 and R2 = +200. Determine the 
refractive index of the lens n, the location of the image t', and the magnification 
of the system m, and indicate if the resulting image is R (real) or V (virtual). 
Sketch the shape of the lens. 

Exercise 1.8 Negative meniscus lens 
n = 1.5 units; t = –200 units; R1 = +200 and R2 = +100. Determine its optical 
power  in diopters, the location of the image t', and the magnification of the 
system m, and indicate if the resulting image is R (real) or V (virtual). Sketch 
the shape of the lens. 

Exercise 1.9 Biconcave lens 
n = 1.5 units; t = –400 units; R1 = –75 and R2 = +300. Determine its focal length 
f, the location of the image t', and the magnification of the system m, and indicate 
if the resulting image is R (real) or V (virtual). Sketch the shape of the lens.  

Exercise 1.10 Equiconcave lens 
 = –0.01333 diopters; t = –400 units; R1 = –100 and R2 = +100. Determine the 
refractive index of the lens n, the location of the image t', and the magnification 
of the system m, and indicate if the resulting image is R (real) or V (virtual). 
Sketch the shape of the lens. 

Exercise 1.11 A rule for lenses 
Based on an observation of the shapes of lenses in the Exs. 1.5–1.10, how could 
you determine whether a lens on a laboratory table were positive or negative by 
just picking it up, even before you looked through the lens? 

Exercise 1.12 Transfer equation II 
A ray is traveling along the optical axis at a height of 10 mm above the 
coordinate origin with a slope angle of +0.2 radians. Where does the ray cross 
the optical axis?  
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Answers 

Ex. 1.1 

 
The index-sine product is the same 
for all three media, so the exit angle 
equals the entrance angle, 30°. 

Ex. 1.2 
y' = y + t' tan u' =10 + 50 tan(0.2)  
    = 10 + 10.14 = 20.14; 
y' = y + t' tan u', 
75 = 10 + t' tan(0.2), 
65 = t' ꞏ 0.203, 
solving for t' = 65/0.203 = 320.66 mm. 
 

Ex. 1.3  
Depending on round-off, the value of 
the angle or the sine is 0.24 rad, or 
14°. For the tangent, i = 0.17 rad, or 
10°. 

Ex. 1.4 
The image is a real image located 200 
mm behind the lens. Its magnification  
m = t'/t = –200/200 = –1. The image is 
inverted and the same size as the object. 

Ex. 1.5 

 

Ex. 1.6 

 

Ex. 1.7 

 

Ex. 1.8 

 

Ex. 1.9 Ex. 1.10 

 
Ex. 1.11 
The center thickness of a positive lens is larger than its edge thickness, whereas 
for a negative lens the reverse is true. 

Ex. 1.12 
Solving 0 = 10 + t tan(0.2), the ray is traveling upward and had already crossed 
the optical axis at –49.33 mm.   

 




