As shown in Fig. 3, the pixel $(u,v)$ of the measuring camera has a corresponding pixel [$s(u,v)$, $t(u,v)$] in the image plane of the texture camera. These two pixels correspond to the same object point with the coordinates [$x(u,v)$, $y(u,v)$, $z(u,v)$]. Using Eqs. (16) and (17), we have Display Formula
$s(u,v)=|p3z(u,v)\u2212x(u,v)+p6p2x(u,v)\u2212p5z(u,v)\u2212p8p9z(u,v)\u2212y(u,v)+p12p2y(u,v)\u2212p11z(u,v)\u2212p14||p1x(u,v)\u2212p4z(u,v)\u2212p7p2x(u,v)\u2212p5z(u,v)\u2212p8p1y(u,v)\u2212p10z(u,v)\u2212p13p2y(u,v)\u2212p11z(u,v)\u2212p14|$(18)
and Display Formula$t(u,v)=|p1x(u,v)\u2212p4z(u,v)\u2212p7p3z(u,v)\u2212x(u,v)+p6p1y(u,v)\u2212p10z(u,v)\u2212p13p9z(u,v)\u2212y(u,v)+p12||p1x(u,v)\u2212p4z(u,v)\u2212p7p2x(u,v)\u2212p5z(u,v)\u2212p8p1y(u,v)\u2212p10z(u,v)\u2212p13p2y(u,v)\u2212p11z(u,v)\u2212p14|.$(19)