Paper
8 April 2008 Highly nonlinear waves' sensor technology for highway infrastructures
Author Affiliations +
Abstract
This paper describes preliminary results towards the development of an innovative NDE/SHM scheme for material characterization and defect detection based on the generation of highly nonlinear solitary waves (HNSWs). HNSWs are stress waves that can form and travel in highly nonlinear systems (i.e. granular, layered, fibrous or porous materials) with a finite spatial dimension independent on the wave amplitude. Compared to conventional linear waves, the generation of HNSWs does not rely on the use of electronic equipment (such as an arbitrary function generator) and on the response of piezoelectric crystals or other transduction mechanism. HNSWs possess unique tunable properties that provide a complete control over tailoring: 1) the choice of the wave's width (spatial size) for defects investigation, 2) the composition of the excited train of waves (i.e. number and separation of the waves used for testing), and 3) their amplitude and velocity. HNSWs are excited onto concrete samples and steel rebar. The first pilot study of this ongoing effort between Caltech and the University of Pittsburgh is presented.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Devvrath Khatri, Chiara Daraio, and Piervincenzo Rizzo "Highly nonlinear waves' sensor technology for highway infrastructures", Proc. SPIE 6934, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2008, 69340U (8 April 2008); https://doi.org/10.1117/12.775848
Lens.org Logo
CITATIONS
Cited by 41 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Particles

Complex systems

Interfaces

Wave propagation

Defect detection

Waveguides

Back to Top