Presentation + Paper
20 June 2021 Sub-diffraction-limit optofluidic scanning microscopy
Biagio Mandracchia, Jeonghwan Son, Shu Jia
Author Affiliations +
Abstract
Optofluidic microscopes use fluids’ properties as an additional degree of freedom for optical detection and microfluidics to perform simple and low-cost object manipulation. In particular, several devices have been optimized for fluorescencebased imaging. These are usually based on the adaptation of established microscopy tools to the microfluidic system with different levels of integration. However, these systems can rarely resolve sub-micron details, posing a limit to the structures that can be studied. An exception is represented by systems developed for particle detection, which are capable to quantify protein expression and analyze small molecules even at nanoscale resolution. However, in this case high resolution requires a low emitter density and it cannot be used to visualize densely packed structures such as membranes and organelles. Hence, we have developed a system for sub-diffraction-limited optofluidic scanning microscopy (OSM) that uses the optofluidics paradigm to extract the inherent super-resolution information of a confocal system. OSM uses the optofluidic flow scanning scheme and a multifocal illumination pattern to obtain resolution doubling with minimal system complexity. In addition, it does not require any mechanical part for the scanning, so that it can be readily adapted to different levels of integration from commercial microscopes to on-chip configurations. This makes our system the most viable configuration for super-resolution optofluidics, being both suitable for continuous flow scanning and compatible with on-chip configurations through the adoption of integrated optics.
Conference Presentation
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Biagio Mandracchia, Jeonghwan Son, and Shu Jia "Sub-diffraction-limit optofluidic scanning microscopy", Proc. SPIE 11786, Optical Methods for Inspection, Characterization, and Imaging of Biomaterials V, 117860G (20 June 2021); https://doi.org/10.1117/12.2593661
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optofluidics

Microscopy

Microfluidics

Confocal microscopy

Microscopes

Super resolution

Proteins

Back to Top