Open Access
22 November 2018 Cherenkov excited short-wavelength infrared fluorescence imaging in vivo with external beam radiation
Author Affiliations +
Abstract
Cherenkov emission induced by external beam radiation therapy from a clinical linear accelerator (LINAC) can be used to excite phosphors deep in biological tissues. As with all luminescence imaging, there is a desire to minimize the spectral overlap between the excitation light and emission wavelengths, here between the Cherenkov and the phosphor. Cherenkov excited short-wavelength infrared (SWIR, 1000 to 1700 nm) fluorescence imaging has been demonstrated for the first time, using long Stokes-shift fluorophore PdSe quantum dots (QD) with nanosecond lifetime and an optimized SWIR detection. The 1  /  λ2 intensity spectrum characteristic of Cherenkov emission leads to low overlap of this into the fluorescence spectrum of PdSe QDs in the SWIR range. Additionally, using a SWIR camera itself inherently ignores the stronger Cherenkov emission wavelengths dominant across the visible spectrum. The SWIR luminescence was shown to extend the depth sensitivity of Cherenkov imaging, which could be used for applications in radiotherapy sensing and imaging in human tissue with targeted molecular probes.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Xu Cao, Shudong Jiang, Mengyu Jeremy Jia, Jason R. Gunn, Tianshun Miao, Scott C. Davis, Petr Bruza, and Brian W. Pogue "Cherenkov excited short-wavelength infrared fluorescence imaging in vivo with external beam radiation," Journal of Biomedical Optics 24(5), 051405 (22 November 2018). https://doi.org/10.1117/1.JBO.24.5.051405
Received: 23 August 2018; Accepted: 1 November 2018; Published: 22 November 2018
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Short wave infrared radiation

Luminescence

Cameras

In vivo imaging

Infrared imaging

Infrared radiation

Electron beams

Back to Top