Micro-optical coherence tomography (µOCT), is an emerging optical imaging approach enabling visualization of tissue microstructures at near cellular level. Small form-factor fiber-optic probes are needed to enable uOCT devices for minimally invasive diagnostic procedures such as coronary catheterization for atherosclerosis evaluation. Manufacturing complexities associated with miniaturizing current fiber-optic probes limit their optical and mechanical performance. We will present details of the design and construction of these miniaturized µOCT probes comprising TPL-based 3D printed optics, along with pre-clinical imaging results from an animal model. This probe is capable of lateral resolution of 5 µm and EDOF exceeding 850 µm in tissue.
We report the use of our multimodal near-infrared fluorescence (NIRF) and OCT imaging system and catheter to perform the first imaging of LUM015 inflammatory activity in rabbit models of atherosclerosis in vivo. Using co-injection and multi-channel intravascular NIRF-OCT, we compared LUM015 (6.2 mg/kg) and preclinical ProSense (VM110, 3.5 mg/kg) fluorescence in the same subject. We found that co-registered fluorescence carpet maps were remarkably similar with a PCC of 0.51 and a Mander’s overlap coefficient of 0.79. Results suggest that LUM015 will be a viable clinical option for intracoronary imaging of plaque inflammatory activity in patients.
KEYWORDS: Optical coherence tomography, Luminescence, Imaging systems, Tissues, Process control, Near infrared, Visualization, Standards development, Lens design, Control systems
We present our next generation clinical dual-modality OCT and near infrared autofluorescence/fluorescence (NIRAF/NIRF) imaging platform. This platform allows combined tissue microstructure visualization (OCT) and obtaining molecular information either by intrinsic tissue near infrared autofluorescence (NIRAF) or by exogenous near infrared fluorescence contrast agents (NIRF). Components of this platform, OCT-NIRAF/NIRF imaging system, rotary junction and catheters, were developed using an industry standard design control processes to enable quality clinical translation. We have identified sources of image degradation in dual-modality catheter-based imaging (e.g. core-cladding crosstalk in OCT, background noise in fluorescence) and present methods to mitigate their effects. We also show catheter fabrication and validation, as well as automated fluorescence sensitivity and distance calibration methods that ensure robust and repeatable system performance.
Upper endoscopy is a standard technique for imaging, sampling, and treating gastrointestinal tissue. Endoscopy is frequently requiring the subjects who undergo the procedure be consciously sedated. Sedation necessitates that the endoscopy procedure be conducted in a specialized setting to mitigate complications should they arise. Endoscopy is further problematic for infants and young children (aged 0-24 months) who sometimes need to be anesthetized. These issues motivate alternative methods for upper gastrointestinal tract visualization and biopsy that do not require conscious sedation/anesthesia. To address this need, we have developed a double lumen 6.5 Fr transnasal introduction catheter (TNIC). During transnasal insertion, real-time OCT imaging provides confirmation of the anatomical location of the device. Once in the stomach, a safe and high-density liquid metal fills a balloon at the distal tip of the TNIC, allowing it to passively transit through stomach into the small intestine. Once properly positioned, OCT-guided instruments for imaging and biopsy can be inserted through main lumen of the TNIC, performing many of the functions of conventional endoscopy and advanced endomicroscopy. To test the feasibility of the TNIC, we conducted a clinical study using the first version of the device in 4 unsedated normal volunteers. Results showed detailed OCT endomicroscopy images of the esophagi and duodena. These results suggest that TNIC may be an effective, less invasive method for the diagnosis of upper GI tract conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.