The adoption of self-healing cementitious materials has gained attention as an alternative to costly and labour-intensive manual repairs. Cementitious blends possess an inherent ability to repair formed cracks through so-called autogenous healing. Whereas the efficiency of autogenous healing remains limited as moisture needs to access the cracks, the healing capacity can be improved through the inclusion of superabsorbent polymers (SAPs). To encourage the use of these self-healing blends within the construction industry, an assessment of the healed state is necessary to ensure a structure’s safety. The requirements for such evaluation method comprise the ability of assessing the regained mechanical performance, while maintaining the structural capacity of the member under study. A non-destructive method that has proven its potential is the application of ultrasonic waves, which are sensitive to the elastic properties of the material they travel through. Coupled ultrasound is currently most often used, while air-coupled ultrasonic measurements allow to reduce the occurring coupling variability. In this study, the self-healing evolution of cementitious mixtures with and without SAPs was assessed through coupled and air-coupled ultrasound. A comparison between both techniques confirmed the potential of air-coupled ultrasound, paving the way for automated self-healing evaluations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.