This paper presents the experimental results on preliminary study of the physical proprieties of the multimode optical fiber in radiation field delivered by electron linear accelerator of the National Research and Development Institute for Laser, Plasma and Radiation Physics (INFLPR). This study is based on the physical degradation effect of the optical fiber due to electron beam exposure measured through dependence of the exposure dose in electron beam and radiation induced attenuation. Optical fiber attenuations were measured before, during and after electron beam exposure. Results show a greater attenuation for multimode optical fiber of lower wavelength.
In this paper, some devices were reviewed to be used in quantum communications. We presented a low density of
Quantum Dots, which could be used to get single quantum dot as light emitting source for generating single photons. An
analytical model to study the thermal behavior of a solid media in interaction with one, two or three laser beams was
developed using the classical heat equation. Integrated optic micro-ring resonators and its simulated result also are
presented. Development of active micro-ring in silicon is at an early stage, where both vertical and horizontal techniques
are feasible. With the epitaxy growth techniques, a possibility for achieving controllable QD density, size and good
uniformity are proposed. A low density of QDs in range of 108 cm-2 has demonstrated through successive adjustment of
the growth parameters. Details among the devices are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.