Our current understanding of cosmology is largely shaped by Type Ia supernovae (SNe Ia), the detonations of carbon-oxygen white dwarves (WDs). SNe Ia are powerful standard candles due to their uniform peak luminosities which decay predictably. SNe Ia progenitor system architecture is highly debated, as none have been observed pre- and post-detonation. Within the first few days after detonation, critical progenitor signatures are preserved in the ultraviolet (UV) bandpass. We present the optical design of UVIa, a proposed 12U CubeSat capable of simultaneous measurements in the far-UV, near-UV, and u-band. Double-offset Cassegrain telescopes were designed to image onto CMOS detectors. We discuss the benefits and challenges associated with double-offset telescopes. UVIa additionally serves as a technology demonstration platform for several cutting-edge UV technologies. The optical design of UVIa enables early-time observations of SNe Ia and serves as a pathfinder for future UV transient telescopes.
Type Ia supernovae (SNe Ia) are a cornerstone of modern cosmology. Upcoming missions like the Nancy Grace Roman Telescope are pushing to high redshifts to measure cosmological parameters like the dark energy equation of state. Despite the impressive success of empirically standardizing their luminosities, the explosion mechanism of SNe Ia remains hotly debated; e.g., the mass of the white dwarf (WD) when it explodes and the state of the companion star (degenerate or non-degenerate) are all currently in question.
Early-time UV observations are sensitive to the outermost layers of the ejecta (and least affected by the explosion itself) and show the most diversity for SNe Ia. This makes the UV bandpass an excellent probe to solve these open questions about the nature of these cosmological distance indicators. To achieve this science, we present UVIa, a CubeSat that will be reactive and have simultaneous optical, Near-UV (NUV), and Far-UV (FUV) coverage, takes advantage of state-of-the-art UV coatings, UV-enhanced silicon detectors with whitelight rejection filter, and autonomous observing scheduling, updated regularly based on newly discovered SNe Ia from modern transient surveys.
KEYWORDS: Astronomy, Photometry, Spectroscopy, Databases, Astrophysics, Data archive systems, Astrometry, Astronomical software, Open source software, Data transmission, Data storage
Introducing HERMES (HOP Enabled Rapid Message Exchange Service), an application which supports sharing and querying structured data containing targets, photometry, spectroscopy, astrometry, and more. Many branches of astronomy, particularly time-domain and multimessenger astrophysics, are driven by time-critical alerts. Coordinating the community-wide response to provide characterization observations of the alerts is critical to realizing many of the science goals in these fields. As part of the SCIMMA (Scalable CyberInfrastructure to support multimessenger astrophysics) project, HERMES provides a platform for users to share messages and data in a structured format that can be sent over the SCIMMA Kafka streams, while also delivering a queryable database of those messages. The goal of HERMES is to encourage more astronomers to share data in a common, machine-readable format. While the platform is robust and general enough to handle many kinds of astrophysical data, HERMES is especially useful for non-localized event follow-up such as gravitational wave or neutrino events and maintains relationships between non-localized events and related messages and targets of interest. We discuss the Domain-Specific Language (DSL) designed for sharing structured astronomical data through HERMES, which also supports formatting and submitting data to external services such as NASA’s GCN (General Coordinates Network) circulars or the TNS (Transient Name Server). Finally, we present the integration between HERMES and TOM (Target and Observation Management) Toolkit based systems, allowing TOM users to share or ingest data through HERMES.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.