Proceedings Article | 28 May 2004
KEYWORDS: Laser tissue interaction, Tissues, Er:YAG lasers, Composite resins, Teeth, Laser dentistry, Erbium, YAG lasers, FDA class I medical device development, Pulsed laser operation
The knowledge about and control of thermal energy produced by Er:YAG laser after irradiating hard dental tissues and compound resin is important because the pulp, like all vital biological tissue, has a certain capacity for supporting stimulus. The objective of this study was to analyze the thermal variation generated by Er:YAG laser (λ=2.94μm) during the preparation of a Class I cavity in the dental structure and in the removal of microhybrid Z100 (3M) compound resin. An evaluation was made of 30 maxillary human pre-molar teeth from the bank of the Endodontic Laboratory Center of Ribeirao Preto Dental School, Brasil. The sample was divided into 6 groups of 5 teeth each: Group 1, preparation of Class I cavity with Er:YAG laser (350mJ, 3Hz, 343 impulses, 120J, 113 seconds); Group 2, preparation of Class I cavity with Er:YAG laser (350mJ, 4Hz, 343 impulses, 120J, 81 seconds); Group 3, preparation of Class I cavity with Er:YAG laser (350mJ, 6Hz, 343 impulses, 120J, 58 seconds); Group 4, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 3Hz, 258 impulses, 90J, 85 seconds); Group 5, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 4Hz, 258 impulses, 90J, 67 seconds); Group 6, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 6Hz, 258 impulses, 42 seconds). The laser used was KaVo Key 2 (Biberach, Germany), λ=2,94μm, P=3 Watts, pulse duration of 250μs, with air-water cooling. The increase in temperature during dental preparation and the removal of the compound resin was evaluated by means of a Tektronix DMM916 Thermocouple (Consitec, Brasil). The results showed that the application of laser for the removal of the hard dental tissues and for the removal of compound resins with the pulse frequencies 3, 4 and 6 Hz did not generate heating greater than 3.1°C and remained within the histopathological limits permitted for pulp tissue (5.5°C) and there was a significant statistical difference between the heat generated by the application of laser in the removal of the hard dental tissues and in the removal of compound resins (p<0.01). The average increase in temperature of the compound resin component was greater than the tooth.