This will count as one of your downloads.
You will have access to both the presentation and article (if available).
During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.
Since 2006, PERSEE (PEGASE Experiment for Research and Stabilization of Extreme Extinction) laboratory test bench is under development by a consortium composed of Centre National d’Etudes Spatiales (CNES), Institut d’Astrophysique Spatiale (IAS), Observatoire de Paris-Meudon (LESIA), Observatoire de la Côte d’Azur (OCA), Office National d’Etudes et de Recherches Aérospatiales (ONERA), and Thalès Alénia Space (TAS) [8]. It is mainly funded by CNES R&D. PERSEE couples an infrared wide band nulling interferometer with local OPD and tip/tilt control loops and a free flying Guidance Navigation and Control (GNC) simulator able to introduce realistic disturbances. Although it was designed in the framework of the PEGASE free flying space mission, PERSEE can adapt very easily to other contexts like FKSI (in space, with a 10 m long beam structure) or ALADDIN [9] (on ground, in Antarctica) because the optical designs of all those missions are very similar. After a short description of the experimental setup, we will present first the results obtained in an intermediate configuration with monochromatic light. Then we will present some preliminary results with polychromatic light. Last, we discuss some very first more general lessons we can already learn from this experiment.
View contact details
No SPIE Account? Create one